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Quantitative Structure-Activity relation-ships

• Question. How can we design perfect chemical 
compounds for a specific biological activity? 

• Naïve Solution. Synthesize all the possible 
chemical compound. Then check the activity of 
all of them, and select the one with optimal 
activity

• Problem : There are more than 1018 possible 
chemical compounds



Quantitative Structure-Activity relations-ships

• QSAR : synthesize a small number of 
compounds (that make sense for target 
activity) and from their data, learn how to

– Predict the biological activity of other compounds

– Predict the structure of optimal compound  

Interpolation (predicting results for missing data point 
from the ones available) 



QSAR Feedback loop



QSAR

• QSAR is a mathematical relationship between 
biological activity of a molecule, and its 
chemical/geometrical properties

• QSAR attempt to learn consistent relationships 
between biological activity and molecular 
properties, so that these rules can be used to 
evaluate the activity of new compounds



Biological activity

• Example Half Maximal Effective Concentration 
(EC50)

• EC50 refer to the concentration of a drug which 
induces a response halfway between baseline (no 
drug) and maximum (drug so abundant that 
activity saturates)

• a measure for drug potency



Chemical / Geometrical Properties

• Portion of the molecular structure responsible 
for specific biological/pharmacological 
activity

• shape of the molecule

• electrostatic fields



QSAR problem formulation
• Given a set of n properties f1, …, fn, and a biological activity A, 

A        f1 f2 …    fn
Cmp1   3.4     2.7     1.3  …   2.2
Cmp2   1.3     0.5     2.8  …  1.5
… 
Cmp’     ?       2.4     4.1  …  3.8

How can we predict activity for a new compound ?

Its crucial to select relevant properties



QSAR problem formulation
• Goal : By learning from a set of 

• Input : m compounds Cmp1, …, Cmpm, along 
with their activities A1, …, Am and their 
properties fij for 1 ≤ 𝑖 ≤ 𝑚 and 1 ≤ 𝑗 ≤ 𝑛

• Output : for a new compound Cmp’ with 
properties f ’1 ,… ,f ’n predict its activity A’ 



QSAR techniques : Partial Least Square

• Model activity as a linear combination of 
features

A=C0 + C1 f1 + … + Cn fn

Coefficients are learned by minimizing the 
prediction error for the training data



Bottleneck of feature-based QSAR
• What are good features ?

• Good Features are difficult to compute

• There is no straightforward approach to compute features 
from the chemical structure

• Its difficult to find a set of features that cover all activities 

• A more natural approach : using atom & bond connectivity



Learning variable size structured data

• Strings
• Sequences
• Trees
• Directed & Undirected graphs

• Texts & Document
• DNA/RNA/Protein sequences
• Evolutionary trees
• Molecular structures



Fix versus variable size data

• Images can be considered fix size data if they 
are up/down samples to a fixed number of 
pixels

• Graphs are variable size data (they can have 
different number of edges / vertices.



Fix versus variable size data
• Mass spectra, in its simplest form, is a variable 

size data 

(2,3,5,7,8)

• If we convert mass spectra to its binary 
representation (presence/absence of peaks), it 
becomes fixed size data

(2,3,5,7,8) (0,1,1,0,1,0,1,1,0,0)



Learning methods for graph-structured 
data

(1) Inductive logic programming
(2) Genetic algorithm / Evolutionary methods
(3) Graphical models
(4) Recursive neural networks
(5) Kernel methods



Inductive logic programming

Represent domain & corresponding relationships 
between data in terms of first order logic

Learn logic theories from data via induction

Ordered search of space of all possible hypothesis 
and testing them against training data (positive & 
negative)



Features of Inductive Logic Programming

(1) Handles symbolic data in natural way

(2) Background knowledge (e.g. chemical 
expertize) easily incorporated

(3) Resulting theory & set of rules easy to 
understand



QSAR Datatset

• 230 compounds

• Ames test : Does a 
chemical cause mutation in 
the DNA of a test bacteria ? 

• 188 positive
• 42 negative



Inductive Logic Programming 
Result

(i) it has an aliphatic atom carbon attached by a single 
bond to a carbon atom which is in a six-membered 
aromatic ring, or

(ii) it has a carbon atom in an aryl-aryl bond between two 
benzene rings with a partial charge greater than 0.010, or

(iii) it has an oxygen atom in a nitro (or related) group 
with a partial charge less than 0.406, or
(iv) it has a hydrogen atom with a partial charge of 0.146,  
or

(v) it has a carbon atom that merges six-membered 
aromatic ring with a partial charge les than 0.005



Genetic Algorithms

• Evolve population of structures (or programs 
specifying structures)

• Use operators that simulates biological mutation 
or recombination

• filtering process that simulates natural selection
• Requires building representation & genetic 

operators fitted to problem
• Computationally intensive



Graphical Models

We will get to this soon



Kernels : similarity measure 
• Given two molecular structures u and v, a kernel k(u,v) is a 

measure of similarity between u and v

• What if we define k(u,v) =<𝒖, 𝒗> ? 

• Dot product is usually a good similarity measure in ℝ+. 

• It is high whenever the two vector have similar directions (angle 
small)

• But in case of variable-size data (e.g. graphs) dot product make 
no sense.  



Kernels Trick
• Kernel trick is a way to map variable size data to 

a fixed size data

?
∅

k(u,v) =<∅ 𝒖 , ∅(𝒗)>

• In the mapped space, we can use dot-product as a 
measure of similarity.



Review of Support Vector Machines
• Training dataset is 𝒮 = (𝒙2, 𝑦2 , …, (𝒙5 , 𝑦5)}
• Test dataset is 𝒮 = (𝒙562, 𝑦7 , …, (𝒙562, 𝑦7)}
• 𝒙8 ∈ ℝ+

• 𝑦8 ∈ −1,+1

• Learning is building a function 𝑓: ℝ+ ⟶
{−1,+1}	
  from training set 𝒮 such that the error 
is minimal on test dataset



Review of Support Vector Machines

y =

Observations :
• w is a linear combination of xi
• The predictor depends only on dot 

prodcut of xi and x



Kernel learning

Kernel trick : apply linear approach to 
transformed data ∅ 𝒙2)	
  … 	
  ∅(𝒙B

• f(x)=sign(∑ 𝛼8𝑦8 < ∅(𝒙8)5
8F2 , ∅(𝒙) >+b)

Support Vector Machine

• f(x)=sign(∑ 𝛼8𝑦8 < 𝒙85
8F2 , 𝒙 >+b)



Kernel trick

• Replace <∅ 𝒙 , ∅(𝒙′)> with 𝑘(𝒙, 𝒙′)

• f(x)=sign(∑ 𝛼8𝑦8𝑘(𝒙85
8F2 , 𝒙)+b)



Positive definite kernels

Let kernel 𝑘: 𝜒×𝜒 → ℝ be a continuous and 
symmetric function
𝑘 positive definite if for all 𝑙 ∈ ℕ and 𝒙2 …𝒙5 ∈
ℝ
𝜆×𝜆 matrix K=(k(xi , xj)) 1 ≤ 𝑖, 𝑗 ≤ 𝜆 is positive 
definite



Mercer’s property

• For any (positive definite) kernel function, 
there is a mapping 𝜙	
  into the feature space ℋ
equipped with inner product such that

∀	
  𝒙, 𝒙′ ∈ 𝜒, 	
  𝑘 𝒙, 𝒙S =	
  < 𝜙(𝒙), 𝜙(𝒙′) >ℋ



Graph Kernel
A proper graph kernel is a vector representation 
of graph

More similar graphs should have more similar 
representations

→
𝜙

(4, 2, 5, 1, 6, 3, …)



Adjacency Matrix

• 𝐺 = 𝒱, ℰ
• 𝒱 = 𝑣2, … , 𝑣B 	
  , 𝐿𝑣

	
  (𝑖) ∈ {𝑂, 𝐶, 𝐻, 𝑁}
• ℰ = 𝑒2, … , 𝑒^ ,	
  
• 𝑛×𝑛 adjacency matrix E of graph G 
• Eij=1 if there is an edge between nodes vi & vj

• The graph uniquely identified by 𝑛×1 label list 
Lv and 𝑛×𝑛 adjacency matrix E 



Is there a unique adjacency matrix for 
each metabolite ? 

• Consider metabolite H2O

𝐿𝑣 = [𝑂	
  𝐻	
  𝐻]
0 1 1

1 0 0

1 0 0
E =

O
H
H

𝐿𝑣 = [𝐻	
  𝑂	
  𝐻]
0 1 0

1 0 1

0 1 0
E =

H
O
H



Example
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Kernels and Graph Representation
• Lets consider metabolite graphs G with 

representations (E,Lv)

• A Kernel map 𝜙(G)=𝜙(E,Lv) defined by the 
graph representation is consistent, if it does not 
depend on the specific representation

• If (𝐸S, 𝐿cS ) are alternative representations of G :
𝜙 𝐸, 𝐿c = 𝜙 𝐸S, 𝐿cS



Example 1
• 𝜙(HiOjClNr)=(i,j,l,r)

• k(HiOjClNr , Hi’Oj’Cl’Nr’) = < 𝜙(HiOjClNr), 𝜙 Hi’Oj’Cl’Nr’ >
= < 𝜙(𝑖,	
  j,	
  l,	
  r), 𝜙 𝑖S, 𝑗S, 𝑙S, 𝑟′ > =  i.i’ + j.j’ + l.l’ + r.r’ 

• H2O→ (2,1,0,0)
• CO2 → (0,2,1,0)
• k(H2O , C2O) = (2,1,0,0). (0,2,1,0) = 2

• Consistent 
• Not a good kernel 
• depends only on L (labels) and not E (metabolite structure) 



Example 2
𝜙(E,L)=E13

This kernel is not consistent

𝐿𝑣 = [𝑂	
  𝐻	
  𝐻]
0 1 1

1 0 0

1 0 0
E =

O
H
H

𝐿′𝑣 = [𝐻	
  𝑂	
  𝐻]
0 1 0

1 0 1

0 1 0
E =

H
O
H

𝜙(E,L)=1 𝜙(E	
  ′,L′)=0



Walks in a graph



Walks in a graph

Walk in a graph with cycle



Walks in a graph

Walk in a graph with double traverse



Example 3 : Label paired kernels

length 3 walks H → O : 7

length 2 walks H → C : 4



Example 3 : Label paired kernels

• Given graphs G1 & G2, count the number of walks in 
G1 and G2 of the same length i and with the label a at 
first and label b for last node

• 𝑎, 𝑏 ∈ 𝐻, 𝑂, 𝐶, 𝑁

• How can we compute these numbers from E and L ?



Example
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length 1 walks 
H → 𝐶

1+1+1+0+0+0+0+
0 = 3
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Computing the number of length 1 walks 

𝜙 𝐸, ℒ = ℒ	
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• Each derivative of this matrix corresponds to the 
number of length 1 walks from one element to 
another	
  



Computing the number of length i walks 

𝜙 𝐸, ℒ = ℒ	
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• Ei contains information about the number of walks 
of length i



Label paired kernels

• 𝑘𝑖 𝐺2, 𝐺s =< ℒ𝐸28ℒt, ℒ𝐸s8ℒt >

• Inner product is Frobenius matrix norm



Label paired kernels

• 𝑘 𝐺2, 𝐺s =

< ℒ2 t𝜆8𝐸28
u

8F2

ℒ2v, ℒs t𝜆8𝐸s8
u

8F2

ℒsv >



Three examples of label based kernel 

• Exponential kernel

∑ 𝜆8𝐸8u
8Fw =∑ (xy)z

8!
u
8Fw

• Truncated power series

∑ 𝜆8𝐸8u
8Fw =∑ (𝛾𝐸)8}

8Fw
• Convergent geometric kernel

∑ 𝜆8𝐸8u
8Fw =(1 − 	
  𝛾𝐸)~2



Bottlenecks of labeled pair kernels
• Limited expressivity of kernel (feature space 
|𝒜|s=16

• Important feature of chemical compound 
missed)

• No consideration of the sequence of nodes 
traversed in the walk

• when counting  H → 𝐶 walks with length 2, 
H → 𝑂→ 𝐶 and H → 𝑁→ 𝐶 treated similarly

• Equal importance to uninformative/noisy/self 
intersecting walks



Kernels based on sequence of labels

• To resolve bottlenecks of the label paired 
kernel, we can consider the number occurences
of a specific sequence, e.g. H → 𝑂 → 𝐶

• Called the “sequence of labels” kernel 



From chemical structures to molecular 
fingerprints

000110000001001000100

Find all paths of length d in graph using depth-
first-search (d=8 or 10)

N → 𝐶 → 𝑂 → 𝐶 N → 𝐶 → 𝐶 → 𝑁

Each bit corresponds to presence / absence of a path



Modeling Molecular Fingerprint as 
documents with word

𝜙}�v� 𝑢 is one if at list one depth first search produces path

000110000001001000100

N → 𝐶 → 𝑂 → 𝐶 N → 𝐶 → 𝐶 → 𝑁



Compressed representions

000110000001001000100

N → 𝐶 → 𝑂 → 𝐶 N → 𝐶 → 𝐶 → 𝑁

• The size of such bit vector can grow very large
• One strategy to reduce the size, is to select vector size l (e.g. 

l=1024), and for present path with index I, set I module l to 
1.

• Result in representation of size l

0001100 0000100 1000100

0001100
0000100
1000100

1001100

l=7



(1) Depth First Search (no cycle, no 
double traverse)

• A
• A-B
• A-B-D
• A-B-D-C
• A-B-D-E
• A-C

• A-B-D-C-A not allowed because of cycle
• A-C-D not allowed because C-D already 

traversed



(2) Depth First Search (cycle OK, no 
double traverse)

• A
• A-B
• A-B-D
• A-B-D-C
• A-B-D-C-A
• A-B-D-E

• A-C not allowed because already traversed



(3) Depth First Search (no cycle, 
double traverse OK)

• A
• A-B
• A-B-D
• A-B-D-C
• A-B-D-E
• A-C
• A-C-D
• A-C-D-B
• A-C-D-E

• A-B-C-D-A not allowed because of cycle



(4) Depth First Search (cycle OK, 
double traverse OK)

• A
• A-B
• A-B-D
• A-B-D-C
• A-B-D-C-A
• A-B-D-E
• A-C
• A-C-D
• A-C-D-B
• A-C-D-B-A
• A-C-D-E



Complexity

• Molecule with n atoms and m edges

• For case (1) & (2) complexity is O(mn)

• For case(3) & (4), complexity grow with 
O(n𝛼d)

• d is depth and 𝛼 branching factor of the graph



Normalizing the kernels

𝜙+ 𝑢 =	
  010110011010110𝜙+ 𝑢 =	
  000100000000100

• This kernel is not normalized for different 
sizes of  molecules.

• The larger the molecules are, the higher is the 
kernel



Tanimoto kernel

• Tanimoto kernel is a normalized kernel 
• Always between 0 and 1

𝜙+ 𝑢 =	
  100101000100100
𝜙+ 𝑣 =	
  010100010101100

𝑘+ 𝑢,𝑢 =	
  5
𝑘+ 𝑣, 𝑣 =	
  6
𝑘+ 𝑢,𝑣 =	
  3

𝑘𝑡+ 𝑢,𝑣 =	
  3/(5+6-­‐3)=3/8



Hybrid kernel

• Tanimoto Kernel only counts the number of 
common paths between two structures

• Hybrid Kernel tries to score both the paths that 
are common to the two structures, and the 
paths that are missing from both

𝑘𝐻+ 𝑢,𝑣 =𝑘𝑡+ 𝑢,𝑣 +~𝑘𝑡+ 𝑢,𝑣
𝑘+ 𝑢,𝑣 =< 𝜙+ 𝑢 ,𝜙+ 𝑣 >
~𝑘+ 𝑢, 𝑣 =< ~𝜙+ 𝑢 ,~𝜙+ 𝑣 >



MinMax kernel

• Take into account the count of paths
• For binary input, identical to Tanimoto

𝜙+ 𝑢 =	
  502040120
𝜙+ 𝑣 =	
  215030041
𝑀𝑖𝑛 =	
  202030020
𝑀𝑎𝑥 =	
  515040141



MinMax and Tanimoto are the same 
for binary data

𝑀𝑖𝑛 =	
  000100000100100
𝑀𝑎𝑥 =	
  110101010101100

𝜙+ 𝑢 =	
  100101000100100
𝜙+ 𝑣 =	
  010100010101100

𝑘𝑡+ 𝑢,𝑣 =	
  3/(5+6-­‐3)=3/8

𝜙+ 𝑢 =	
  100101000100100
𝜙+ 𝑣 =	
  010100010101100

𝑘𝑀+ 𝑢,𝑣 =	
  3/8



---

Cross validation

• To limit over-fitting
• Divide data into training and test
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Leave one out strategy
• At each step, remove one datapoint from the 

training set, and only test that one
• Repeat for all data points
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Datasets : Muatg
Mutagenecity of molecules (ability to change 
DNA/ increase frequency of mutation)

• Total : 188
• Number of positives : 125 (66%)
• Number of negatives : 63 (33.5%)
• Average #atom/mol : 17.9
• Average #bond/mol : 19.7
• Average degree : 2.21



Leave one out strategy

Results : 



Application of Graph Kernels : protein 
function prediction 



Graph Structure of a Protein

• Model the protein as a graph

• Nodes & edges of the graph contain 
information about the secondary structure

• Graph model contains information about 
structure, sequence, and chemical properties of 
the protein



Protein Structure
Primary structure

Secondary structure

Tertiary structure

Quaternary structure

3-D structures possessing 
discrete functions

aggregation of two or more 
individual polypeptide chains 
that operate as a single 
functional unit

regular local sub-structures 
of polypeptide backbone 
chain



Protein secondary Structures

The three 
dimensional 
form of a part 
of protein

Primary structure

Secondary structure

Alpha-helix



From Protein to graphs
• Each node represent a secondary structure

• Two nodes connected if either they are (i) 
close in 3-dimensional space (structural edge), 
or (ii) next to each other in primary structure



Node label

• Node labels contain information about
– Structure (Helix, Sheet, Turn?) 
– Hydrophobicity 
– Van der Waal Volume
– Polarity 



Protein function

• Catalyzing metabolic reactions
• DNA replication
• Responding to stimuli
• Transporting molecules



Predicting protein function

• Proteins with similar functions have similar 
structures

• Proteins with similar structures have similar 
graphs



The learning problem

• We have a set of c functions F={1,…,c}
• We have a training set of proteins (represented 

by graphs) along with their known functions 
(Gi, fi), 𝑓𝑖 ∈ 𝐹

• Our goal is to learn the relationship between 
graph structure & function

• And predict function for new graph structures



The learning problem

New

Training

f1

f2

f3

?



Random walk kernel

• Counts the number of walks of a specific 
length in the two graphs that go through the 
same set of labels. 



Random Walk Kernels

• In practice, the labels of nodes on the walks 
are not identical

• We can first define kernels on similarity of 
walks

• Then extend kernel from walk to graph :



Walk kernel

v1

v2

v3

w1

w2

w3



Classifying enzymes from non-enzymes

• Enzymes are proteins that are responsible for 
accelerating chemical reactions. 


