
Graph kernels for chemical
informatics

Hosein Mohimani
GHC7717

hoseinm@andrew.cmu.edu

Quantitative Structure-Activity relation-ships

• Question. How can we design perfect chemical
compounds for a specific biological activity?

• Naïve Solution. Synthesize all the possible
chemical compound. Then check the activity of
all of them, and select the one with optimal
activity

• Problem : There are more than 1018 possible
chemical compounds

Quantitative Structure-Activity relations-ships

• QSAR : synthesize a small number of
compounds (that make sense for target
activity) and from their data, learn how to

– Predict the biological activity of other compounds

– Predict the structure of optimal compound

Interpolation (predicting results for missing data point
from the ones available)

QSAR Feedback loop

QSAR

• QSAR is a mathematical relationship between
biological activity of a molecule, and its
chemical/geometrical properties

• QSAR attempt to learn consistent relationships
between biological activity and molecular
properties, so that these rules can be used to
evaluate the activity of new compounds

Biological activity

• Example Half Maximal Effective Concentration
(EC50)

• EC50 refer to the concentration of a drug which
induces a response halfway between baseline (no
drug) and maximum (drug so abundant that
activity saturates)

• a measure for drug potency

Chemical / Geometrical Properties

• Portion of the molecular structure responsible
for specific biological/pharmacological
activity

• shape of the molecule

• electrostatic fields

QSAR problem formulation
• Given a set of n properties f1, …, fn, and a biological activity A,

A f1 f2 … fn
Cmp1 3.4 2.7 1.3 … 2.2
Cmp2 1.3 0.5 2.8 … 1.5
…
Cmp’ ? 2.4 4.1 … 3.8

How can we predict activity for a new compound ?

Its crucial to select relevant properties

QSAR problem formulation
• Goal : By learning from a set of

• Input : m compounds Cmp1, …, Cmpm, along
with their activities A1, …, Am and their
properties fij for 1 ≤ 𝑖 ≤ 𝑚 and 1 ≤ 𝑗 ≤ 𝑛

• Output : for a new compound Cmp’ with
properties f ’1 ,… ,f ’n predict its activity A’

QSAR techniques : Partial Least Square

• Model activity as a linear combination of
features

A=C0 + C1 f1 + … + Cn fn

Coefficients are learned by minimizing the
prediction error for the training data

Bottleneck of feature-based QSAR
• What are good features ?

• Good Features are difficult to compute

• There is no straightforward approach to compute features
from the chemical structure

• Its difficult to find a set of features that cover all activities

• A more natural approach : using atom & bond connectivity

Learning variable size structured data

• Strings
• Sequences
• Trees
• Directed & Undirected graphs

• Texts & Document
• DNA/RNA/Protein sequences
• Evolutionary trees
• Molecular structures

Fix versus variable size data

• Images can be considered fix size data if they
are up/down samples to a fixed number of
pixels

• Graphs are variable size data (they can have
different number of edges / vertices.

Fix versus variable size data
• Mass spectra, in its simplest form, is a variable

size data

(2,3,5,7,8)

• If we convert mass spectra to its binary
representation (presence/absence of peaks), it
becomes fixed size data

(2,3,5,7,8) (0,1,1,0,1,0,1,1,0,0)

Learning methods for graph-structured
data

(1) Inductive logic programming
(2) Genetic algorithm / Evolutionary methods
(3) Graphical models
(4) Recursive neural networks
(5) Kernel methods

Inductive logic programming

Represent domain & corresponding relationships
between data in terms of first order logic

Learn logic theories from data via induction

Ordered search of space of all possible hypothesis
and testing them against training data (positive &
negative)

Features of Inductive Logic Programming

(1) Handles symbolic data in natural way

(2) Background knowledge (e.g. chemical
expertize) easily incorporated

(3) Resulting theory & set of rules easy to
understand

QSAR Datatset

• 230 compounds

• Ames test : Does a
chemical cause mutation in
the DNA of a test bacteria ?

• 188 positive
• 42 negative

Inductive Logic Programming
Result

(i) it has an aliphatic atom carbon attached by a single
bond to a carbon atom which is in a six-membered
aromatic ring, or

(ii) it has a carbon atom in an aryl-aryl bond between two
benzene rings with a partial charge greater than 0.010, or

(iii) it has an oxygen atom in a nitro (or related) group
with a partial charge less than 0.406, or
(iv) it has a hydrogen atom with a partial charge of 0.146,
or

(v) it has a carbon atom that merges six-membered
aromatic ring with a partial charge les than 0.005

Genetic Algorithms

• Evolve population of structures (or programs
specifying structures)

• Use operators that simulates biological mutation
or recombination

• filtering process that simulates natural selection
• Requires building representation & genetic

operators fitted to problem
• Computationally intensive

Graphical Models

We will get to this soon

Kernels : similarity measure
• Given two molecular structures u and v, a kernel k(u,v) is a

measure of similarity between u and v

• What if we define k(u,v) =<𝒖, 𝒗> ?

• Dot product is usually a good similarity measure in ℝ+.

• It is high whenever the two vector have similar directions (angle
small)

• But in case of variable-size data (e.g. graphs) dot product make
no sense.

Kernels Trick
• Kernel trick is a way to map variable size data to

a fixed size data

?
∅

k(u,v) =<∅ 𝒖 , ∅(𝒗)>

• In the mapped space, we can use dot-product as a
measure of similarity.

Review of Support Vector Machines
• Training dataset is 𝒮 = (𝒙2, 𝑦2 , …, (𝒙5 , 𝑦5)}
• Test dataset is 𝒮 = (𝒙562, 𝑦7 , …, (𝒙562, 𝑦7)}
• 𝒙8 ∈ ℝ+

• 𝑦8 ∈ −1,+1

• Learning is building a function 𝑓: ℝ+ ⟶
{−1,+1}	
 from training set 𝒮 such that the error
is minimal on test dataset

Review of Support Vector Machines

y =

Observations :
• w is a linear combination of xi
• The predictor depends only on dot

prodcut of xi and x

Kernel learning

Kernel trick : apply linear approach to
transformed data ∅ 𝒙2)	
 … 	
 ∅(𝒙B

• f(x)=sign(∑ 𝛼8𝑦8 < ∅(𝒙8)5
8F2 , ∅(𝒙) >+b)

Support Vector Machine

• f(x)=sign(∑ 𝛼8𝑦8 < 𝒙85
8F2 , 𝒙 >+b)

Kernel trick

• Replace <∅ 𝒙 , ∅(𝒙′)> with 𝑘(𝒙, 𝒙′)

• f(x)=sign(∑ 𝛼8𝑦8𝑘(𝒙85
8F2 , 𝒙)+b)

Positive definite kernels

Let kernel 𝑘: 𝜒×𝜒 → ℝ be a continuous and
symmetric function
𝑘 positive definite if for all 𝑙 ∈ ℕ and 𝒙2 …𝒙5 ∈
ℝ
𝜆×𝜆 matrix K=(k(xi , xj)) 1 ≤ 𝑖, 𝑗 ≤ 𝜆 is positive
definite

Mercer’s property

• For any (positive definite) kernel function,
there is a mapping 𝜙	
 into the feature space ℋ
equipped with inner product such that

∀	
 𝒙, 𝒙′ ∈ 𝜒, 	
 𝑘 𝒙, 𝒙S =	
 < 𝜙(𝒙), 𝜙(𝒙′) >ℋ

Graph Kernel
A proper graph kernel is a vector representation
of graph

More similar graphs should have more similar
representations

→
𝜙

(4, 2, 5, 1, 6, 3, …)

Adjacency Matrix

• 𝐺 = 𝒱, ℰ
• 𝒱 = 𝑣2, … , 𝑣B 	
 , 𝐿𝑣

	
 (𝑖) ∈ {𝑂, 𝐶, 𝐻, 𝑁}
• ℰ = 𝑒2, … , 𝑒^ ,	

• 𝑛×𝑛 adjacency matrix E of graph G
• Eij=1 if there is an edge between nodes vi & vj

• The graph uniquely identified by 𝑛×1 label list
Lv and 𝑛×𝑛 adjacency matrix E

Is there a unique adjacency matrix for
each metabolite ?

• Consider metabolite H2O

𝐿𝑣 = [𝑂	
 𝐻	
 𝐻]
0 1 1

1 0 0

1 0 0
E =

O
H
H

𝐿𝑣 = [𝐻	
 𝑂	
 𝐻]
0 1 0

1 0 1

0 1 0
E =

H
O
H

Example

𝐿𝑣 = [𝐻	
 	
 𝐶	
 	
 𝐻	
 	
 	
 𝐻	
 	
 𝐶	
 	
 	
 𝑂	
 	
 𝑂	
 	
 𝐻]

E =

O

H

1 1 2 3 2 1 2 4

1 1

2

3

2

2

1

4

C
H
H
C

O
H

0	
 	
 	
 1	
 	
 	
 0	
 	
 	
 0	
 	
 	
 0	
 	
 	
 0	
 	
 	
 0	
 	
 	
 0
1	
 	
 	
 0	
 	
 	
 1	
 	
 	
 1	
 	
 	
 1	
 	
 	
 0	
 	
 	
 0	
 	
 	
 0
0	
 	
 	
 1	
 	
 	
 0	
 	
 	
 0	
 	
 	
 0	
 	
 	
 0	
 	
 	
 0	
 	
 	
 0
0	
 	
 	
 1	
 	
 	
 0	
 	
 	
 0	
 	
 	
 0	
 	
 	
 0	
 	
 	
 0	
 	
 	
 0
0	
 	
 	
 1	
 	
 	
 0	
 	
 	
 0	
 	
 	
 0	
 	
 	
 1	
 	
 	
 1	
 	
 	
 0
0	
 	
 	
 0	
 	
 	
 0	
 	
 	
 0	
 	
 	
 1	
 	
 	
 0	
 	
 	
 0	
 	
 	
 0
0	
 	
 	
 0	
 	
 	
 0	
 	
 	
 0	
 	
 	
 1	
 	
 	
 0	
 	
 	
 0	
 	
 	
 1
0	
 	
 	
 0	
 	
 	
 0	
 	
 	
 0	
 	
 	
 0	
 	
 	
 0	
 	
 	
 1	
 	
 	
 0

Kernels and Graph Representation
• Lets consider metabolite graphs G with

representations (E,Lv)

• A Kernel map 𝜙(G)=𝜙(E,Lv) defined by the
graph representation is consistent, if it does not
depend on the specific representation

• If (𝐸S, 𝐿cS) are alternative representations of G :
𝜙 𝐸, 𝐿c = 𝜙 𝐸S, 𝐿cS

Example 1
• 𝜙(HiOjClNr)=(i,j,l,r)

• k(HiOjClNr , Hi’Oj’Cl’Nr’) = < 𝜙(HiOjClNr), 𝜙 Hi’Oj’Cl’Nr’ >
= < 𝜙(𝑖,	
 j,	
 l,	
 r), 𝜙 𝑖S, 𝑗S, 𝑙S, 𝑟′ > = i.i’ + j.j’ + l.l’ + r.r’

• H2O→ (2,1,0,0)
• CO2 → (0,2,1,0)
• k(H2O , C2O) = (2,1,0,0). (0,2,1,0) = 2

• Consistent
• Not a good kernel
• depends only on L (labels) and not E (metabolite structure)

Example 2
𝜙(E,L)=E13

This kernel is not consistent

𝐿𝑣 = [𝑂	
 𝐻	
 𝐻]
0 1 1

1 0 0

1 0 0
E =

O
H
H

𝐿′𝑣 = [𝐻	
 𝑂	
 𝐻]
0 1 0

1 0 1

0 1 0
E =

H
O
H

𝜙(E,L)=1 𝜙(E	
 ′,L′)=0

Walks in a graph

Walks in a graph

Walk in a graph with cycle

Walks in a graph

Walk in a graph with double traverse

Example 3 : Label paired kernels

length 3 walks H → O : 7

length 2 walks H → C : 4

Example 3 : Label paired kernels

• Given graphs G1 & G2, count the number of walks in
G1 and G2 of the same length i and with the label a at
first and label b for last node

• 𝑎, 𝑏 ∈ 𝐻, 𝑂, 𝐶, 𝑁

• How can we compute these numbers from E and L ?

Example

𝐿𝑣 = [𝐻	
 	
 𝐶	
 	
 𝐻	
 	
 	
 𝐻	
 	
 𝐶	
 	
 	
 𝑂	
 	
 𝑂	
 	
 𝐻]

E =

O

H

1 1 2 3 2 1 2 4

1 1

2

3

2

2

1

4

C
H
H
C

O
H

0	
 	
 	
 1	
 	
 	
 0	
 	
 	
 0	
 	
 	
 0	
 	
 	
 0	
 	
 	
 0	
 	
 	
 0
1	
 	
 	
 0	
 	
 	
 1	
 	
 	
 1	
 	
 	
 1	
 	
 	
 0	
 	
 	
 0	
 	
 	
 0
0	
 	
 	
 1	
 	
 	
 0	
 	
 	
 0	
 	
 	
 0	
 	
 	
 0	
 	
 	
 0	
 	
 	
 0
0	
 	
 	
 1	
 	
 	
 0	
 	
 	
 0	
 	
 	
 0	
 	
 	
 0	
 	
 	
 0	
 	
 	
 0
0	
 	
 	
 1	
 	
 	
 0	
 	
 	
 0	
 	
 	
 0	
 	
 	
 1	
 	
 	
 1	
 	
 	
 0
0	
 	
 	
 0	
 	
 	
 0	
 	
 	
 0	
 	
 	
 1	
 	
 	
 0	
 	
 	
 0	
 	
 	
 0
0	
 	
 	
 0	
 	
 	
 0	
 	
 	
 0	
 	
 	
 1	
 	
 	
 0	
 	
 	
 0	
 	
 	
 1
0	
 	
 	
 0	
 	
 	
 0	
 	
 	
 0	
 	
 	
 0	
 	
 	
 0	
 	
 	
 1	
 	
 	
 0

length 1 walks
H → 𝐶

1+1+1+0+0+0+0+
0 = 3

𝐿𝑣 = [𝐻	
 	
 𝐶	
 	
 𝐻	
 	
 	
 𝐻	
 	
 𝐶	
 	
 	
 𝑂	
 	
 𝑂	
 	
 𝐻]

E =

O

H

1 1 2 3 2 1 2 4

C
H
H
C

O
H

0	
 	
 	
 1	
 	
 	
 0	
 	
 	
 0	
 	
 	
 0	
 	
 	
 0	
 	
 	
 0	
 	
 	
 0
1	
 	
 	
 0	
 	
 	
 1	
 	
 	
 1	
 	
 	
 1	
 	
 	
 0	
 	
 	
 0	
 	
 	
 0
0	
 	
 	
 1	
 	
 	
 0	
 	
 	
 0	
 	
 	
 0	
 	
 	
 0	
 	
 	
 0	
 	
 	
 0
0	
 	
 	
 1	
 	
 	
 0	
 	
 	
 0	
 	
 	
 0	
 	
 	
 0	
 	
 	
 0	
 	
 	
 0
0	
 	
 	
 1	
 	
 	
 0	
 	
 	
 0	
 	
 	
 0	
 	
 	
 1	
 	
 	
 1	
 	
 	
 0
0	
 	
 	
 0	
 	
 	
 0	
 	
 	
 0	
 	
 	
 1	
 	
 	
 0	
 	
 	
 0	
 	
 	
 0
0	
 	
 	
 0	
 	
 	
 0	
 	
 	
 0	
 	
 	
 1	
 	
 	
 0	
 	
 	
 0	
 	
 	
 1
0	
 	
 	
 0	
 	
 	
 0	
 	
 	
 0	
 	
 	
 0	
 	
 	
 0	
 	
 	
 1	
 	
 	
 0

0	
 	
 	
 0	
 	
 	
 0	
 	
 	
 0	
 	
 	
 0	
 	
 	
 1	
 	
 	
 1	
 	
 	
 0
1	
 	
 	
 0	
 	
 	
 1	
 	
 	
 1	
 	
 	
 0	
 	
 	
 0	
 	
 	
 0	
 	
 	
 1
0	
 	
 	
 1	
 	
 	
 0	
 	
 	
 0	
 	
 	
 1	
 	
 	
 0	
 	
 	
 0	
 	
 	
 0
0	
 	
 	
 0	
 	
 	
 0	
 	
 	
 0	
 	
 	
 0	
 	
 	
 0	
 	
 	
 0	
 	
 	
 0

O
H
C
N

0	
 	
 	
 1	
 	
 	
 0	
 	
 	
 0
0	
 	
 	
 0	
 	
 	
 1	
 	
 	
 0
0	
 	
 	
 1	
 	
 	
 0	
 	
 	
 0
0	
 	
 	
 1	
 	
 	
 0	
 	
 	
 0
0	
 	
 	
 0	
 	
 	
 1	
 	
 	
 0
1	
 	
 	
 0	
 	
 	
 0	
 	
 	
 0
1	
 	
 	
 0	
 	
 	
 0	
 	
 	
 0
0	
 	
 	
 1	
 	
 	
 0	
 	
 	
 0

𝑂	
 	
 𝐻	
 	
 𝐶	
 	
 𝑁

ℒ𝑡

ℒ

Computing the number of length 1 walks

𝜙 𝐸, ℒ = ℒ	
 𝐸ℒt =
0	
 	
 	
 1	
 	
 	
 2	
 	
 	
 0
1	
 	
 	
 0	
 	
 	
 3	
 	
 	
 0
2	
 	
 	
 3	
 	
 	
 2	
 	
 	
 0
0	
 	
 	
 0	
 	
 	
 0	
 	
 	
 0

𝑂	
 	
 𝐻	
 	
 𝐶	
 	
 𝑁
O
H
C
N

• Each derivative of this matrix corresponds to the
number of length 1 walks from one element to
another	

Computing the number of length i walks

𝜙 𝐸, ℒ = ℒ	
 𝐸𝑖ℒt =
0	
 	
 	
 1	
 	
 	
 2	
 	
 	
 0
1	
 	
 	
 0	
 	
 	
 3	
 	
 	
 0
2	
 	
 	
 3	
 	
 	
 2	
 	
 	
 0
0	
 	
 	
 0	
 	
 	
 0	
 	
 	
 0

𝑂	
 	
 𝐻	
 	
 𝐶	
 	
 𝑁
O
H
C
N

• Ei contains information about the number of walks
of length i

Label paired kernels

• 𝑘𝑖 𝐺2, 𝐺s =< ℒ𝐸28ℒt, ℒ𝐸s8ℒt >

• Inner product is Frobenius matrix norm

Label paired kernels

• 𝑘 𝐺2, 𝐺s =

< ℒ2 t𝜆8𝐸28
u

8F2

ℒ2v, ℒs t𝜆8𝐸s8
u

8F2

ℒsv >

Three examples of label based kernel

• Exponential kernel

∑ 𝜆8𝐸8u
8Fw =∑ (xy)z

8!
u
8Fw

• Truncated power series

∑ 𝜆8𝐸8u
8Fw =∑ (𝛾𝐸)8}

8Fw
• Convergent geometric kernel

∑ 𝜆8𝐸8u
8Fw =(1 − 	
 𝛾𝐸)~2

Bottlenecks of labeled pair kernels
• Limited expressivity of kernel (feature space
|𝒜|s=16

• Important feature of chemical compound
missed)

• No consideration of the sequence of nodes
traversed in the walk

• when counting H → 𝐶 walks with length 2,
H → 𝑂→ 𝐶 and H → 𝑁→ 𝐶 treated similarly

• Equal importance to uninformative/noisy/self
intersecting walks

Kernels based on sequence of labels

• To resolve bottlenecks of the label paired
kernel, we can consider the number occurences
of a specific sequence, e.g. H → 𝑂 → 𝐶

• Called the “sequence of labels” kernel

From chemical structures to molecular
fingerprints

000110000001001000100

Find all paths of length d in graph using depth-
first-search (d=8 or 10)

N → 𝐶 → 𝑂 → 𝐶 N → 𝐶 → 𝐶 → 𝑁

Each bit corresponds to presence / absence of a path

Modeling Molecular Fingerprint as
documents with word

𝜙}�v� 𝑢 is one if at list one depth first search produces path

000110000001001000100

N → 𝐶 → 𝑂 → 𝐶 N → 𝐶 → 𝐶 → 𝑁

Compressed representions

000110000001001000100

N → 𝐶 → 𝑂 → 𝐶 N → 𝐶 → 𝐶 → 𝑁

• The size of such bit vector can grow very large
• One strategy to reduce the size, is to select vector size l (e.g.

l=1024), and for present path with index I, set I module l to
1.

• Result in representation of size l

0001100 0000100 1000100

0001100
0000100
1000100

1001100

l=7

(1) Depth First Search (no cycle, no
double traverse)

• A
• A-B
• A-B-D
• A-B-D-C
• A-B-D-E
• A-C

• A-B-D-C-A not allowed because of cycle
• A-C-D not allowed because C-D already

traversed

(2) Depth First Search (cycle OK, no
double traverse)

• A
• A-B
• A-B-D
• A-B-D-C
• A-B-D-C-A
• A-B-D-E

• A-C not allowed because already traversed

(3) Depth First Search (no cycle,
double traverse OK)

• A
• A-B
• A-B-D
• A-B-D-C
• A-B-D-E
• A-C
• A-C-D
• A-C-D-B
• A-C-D-E

• A-B-C-D-A not allowed because of cycle

(4) Depth First Search (cycle OK,
double traverse OK)

• A
• A-B
• A-B-D
• A-B-D-C
• A-B-D-C-A
• A-B-D-E
• A-C
• A-C-D
• A-C-D-B
• A-C-D-B-A
• A-C-D-E

Complexity

• Molecule with n atoms and m edges

• For case (1) & (2) complexity is O(mn)

• For case(3) & (4), complexity grow with
O(n𝛼d)

• d is depth and 𝛼 branching factor of the graph

Normalizing the kernels

𝜙+ 𝑢 =	
 010110011010110𝜙+ 𝑢 =	
 000100000000100

• This kernel is not normalized for different
sizes of molecules.

• The larger the molecules are, the higher is the
kernel

Tanimoto kernel

• Tanimoto kernel is a normalized kernel
• Always between 0 and 1

𝜙+ 𝑢 =	
 100101000100100
𝜙+ 𝑣 =	
 010100010101100

𝑘+ 𝑢,𝑢 =	
 5
𝑘+ 𝑣, 𝑣 =	
 6
𝑘+ 𝑢,𝑣 =	
 3

𝑘𝑡+ 𝑢,𝑣 =	
 3/(5+6-­‐3)=3/8

Hybrid kernel

• Tanimoto Kernel only counts the number of
common paths between two structures

• Hybrid Kernel tries to score both the paths that
are common to the two structures, and the
paths that are missing from both

𝑘𝐻+ 𝑢,𝑣 =𝑘𝑡+ 𝑢,𝑣 +~𝑘𝑡+ 𝑢,𝑣
𝑘+ 𝑢,𝑣 =< 𝜙+ 𝑢 ,𝜙+ 𝑣 >
~𝑘+ 𝑢, 𝑣 =< ~𝜙+ 𝑢 ,~𝜙+ 𝑣 >

MinMax kernel

• Take into account the count of paths
• For binary input, identical to Tanimoto

𝜙+ 𝑢 =	
 502040120
𝜙+ 𝑣 =	
 215030041
𝑀𝑖𝑛 =	
 202030020
𝑀𝑎𝑥 =	
 515040141

MinMax and Tanimoto are the same
for binary data

𝑀𝑖𝑛 =	
 000100000100100
𝑀𝑎𝑥 =	
 110101010101100

𝜙+ 𝑢 =	
 100101000100100
𝜙+ 𝑣 =	
 010100010101100

𝑘𝑡+ 𝑢,𝑣 =	
 3/(5+6-­‐3)=3/8

𝜙+ 𝑢 =	
 100101000100100
𝜙+ 𝑣 =	
 010100010101100

𝑘𝑀+ 𝑢,𝑣 =	
 3/8

Cross validation

• To limit over-fitting
• Divide data into training and test

+
+ +

+
+

- -
- -

-

-
+

+
++

+-

-
-

-

+
+

+
- -

+

+

+

+
- -

-

-
+

+
+

-

-

training

test

Leave one out strategy
• At each step, remove one datapoint from the

training set, and only test that one
• Repeat for all data points

+
+ +

+
+

- -
- -

-

-
+

+
++

+-

-
-

-

+test

+
+ +

+
+

- -
- -

-

-
+

+
++

+-

-
-

-
training

Datasets : Muatg
Mutagenecity of molecules (ability to change
DNA/ increase frequency of mutation)

• Total : 188
• Number of positives : 125 (66%)
• Number of negatives : 63 (33.5%)
• Average #atom/mol : 17.9
• Average #bond/mol : 19.7
• Average degree : 2.21

Leave one out strategy

Results :

Application of Graph Kernels : protein
function prediction

Graph Structure of a Protein

• Model the protein as a graph

• Nodes & edges of the graph contain
information about the secondary structure

• Graph model contains information about
structure, sequence, and chemical properties of
the protein

Protein Structure
Primary structure

Secondary structure

Tertiary structure

Quaternary structure

3-D structures possessing
discrete functions

aggregation of two or more
individual polypeptide chains
that operate as a single
functional unit

regular local sub-structures
of polypeptide backbone
chain

Protein secondary Structures

The three
dimensional
form of a part
of protein

Primary structure

Secondary structure

Alpha-helix

From Protein to graphs
• Each node represent a secondary structure

• Two nodes connected if either they are (i)
close in 3-dimensional space (structural edge),
or (ii) next to each other in primary structure

Node label

• Node labels contain information about
– Structure (Helix, Sheet, Turn?)
– Hydrophobicity
– Van der Waal Volume
– Polarity

Protein function

• Catalyzing metabolic reactions
• DNA replication
• Responding to stimuli
• Transporting molecules

Predicting protein function

• Proteins with similar functions have similar
structures

• Proteins with similar structures have similar
graphs

The learning problem

• We have a set of c functions F={1,…,c}
• We have a training set of proteins (represented

by graphs) along with their known functions
(Gi, fi), 𝑓𝑖 ∈ 𝐹

• Our goal is to learn the relationship between
graph structure & function

• And predict function for new graph structures

The learning problem

New

Training

f1

f2

f3

?

Random walk kernel

• Counts the number of walks of a specific
length in the two graphs that go through the
same set of labels.

Random Walk Kernels

• In practice, the labels of nodes on the walks
are not identical

• We can first define kernels on similarity of
walks

• Then extend kernel from walk to graph :

Walk kernel

v1

v2

v3

w1

w2

w3

Classifying enzymes from non-enzymes

• Enzymes are proteins that are responsible for
accelerating chemical reactions.

