Multiplex De Novo Sequencing of Peptide Antibiotics

HOSEIN MOHIMANI,1 WEI-TING LIU,2 YU-LIANG YANG,3 SUSANA P. GAUDÊNCIO,4 WILLIAM FENICAL,4 PIETER C. DORRESTEIN,2,3 and PAVEL A. PEVZNER5

ABSTRACT

Proliferation of drug-resistant diseases raises the challenge of searching for new, more efficient antibiotics. Currently, some of the most effective antibiotics (i.e., Vancomycin and Daptomycin) are cyclic peptides produced by non-ribosomal biosynthetic pathways. The isolation and sequencing of cyclic peptide antibiotics, unlike the same activity with linear peptides, is time-consuming and error-prone. The dominant technique for sequencing cyclic peptides is nuclear magnetic resonance (NMR)–based and requires large amounts (milligrams) of purified materials that, for most compounds, are not possible to obtain. Given these facts, there is a need for new tools to sequence cyclic non-ribosomal peptides (NRPs) using picograms of material. Since nearly all cyclic NRPs are produced along with related analogs, we develop a mass spectrometry approach for sequencing all related peptides at once (in contrast to the existing approach that analyzes individual peptides). Our results suggest that instead of attempting to isolate and NMR-sequence the most abundant compound, one should acquire spectra of many related compounds and sequence all of them simultaneously using tandem mass spectrometry. We illustrate applications of this approach by sequencing new variants of cyclic peptide antibiotics from Bacillus brevis, as well as sequencing a previously unknown family of cyclic NRPs produced by marine bacteria. Supplementary Material is available online at www.liebertonline.com/cmb

Key words: algorithms, biochemical networks, mass spectroscopy, microbial ecology.

1. INTRODUCTION

In 1939, Renê Dubos discovered that the peptide fraction Tyrothricin, isolated from the soil microbe Bacillus brevis, had an ability to inhibit the growth of Streptococcus pneumoniae, rendering it harmless. Although discovered 10 years after penicillin, it was the first mass produced antibiotic deployed in Soviet hospitals in 1943. Unfortunately, the identification of amino acid sequences of cyclic peptides, once a heroic effort, remains difficult today. The dominant technique for sequencing cyclic peptide antibiotics is two-dimensional (2D) nuclear magnetic resonance (NMR) spectroscopy, which requires large amounts of highly purified materials that, are often nearly impossible to obtain.
Tyrothricin is a classic example of a mixture of related cyclic decapeptides whose sequencing proved to be difficult and took over two decades to complete. By the 1970s, scientists had sequenced five compounds, Tyrocidine A–E, from the original mixture. However, these five are not the only peptides produced by *B. brevis*, and even today it remains unclear whether all of the antibiotics produced by this bacterium have been documented (see Tang et al. [1992] for a list of 28 known peptides from *B. brevis*).

Figure 1a shows structure of Tyrocidine A. Table S1 (all Supplementary Material is available online at www.liebertonline.com/cmb) illustrates that most cyclic decapeptides in the Tyrocidine/Tryptocidine family can be represented as shown (the rounded amino acid masses in daltons are also shown):

It may come as a surprise that there are no genes in *B. brevis* whose codons encode any of the Tyrocidine peptides! Tyrocidines, similar to many antibiotics such as Vancomycin or Daptomycin, represent cyclic non-ribosomal peptides (NRPs) that do not follow the central dogma “DNA produces RNA produces Protein.” They are assembled by nonribosomal peptide synthetases that represent both the mRNA-free template and building machinery for the peptide biosynthesis (Sieber and Marahiel, 2005). Thus, NRPs are not directly inscribed in genomes and cannot be inferred with traditional DNA sequencing. Cyclic NRPs are of great pharmacological importance as they have been optimized by evolution for chemical defense and communication. Cyclic NRPs include antibiotics, anti-tumor agents, immunosuppressors, toxins, and many peptides with still unknown functions.

Most NRPs are cyclic peptides that contain nonstandard amino acids, increasing the number of possible building blocks from 20 to several hundreds. The now dominant 2D NMR-based methods for NRP characterization are time-consuming, error prone, and requires large amounts of highly purified material. Because NRPs are often produced by difficult to cultivate microorganisms, it may not be possible to get sufficient quantities for 2D structure elucidation therefore it is important to develop a nmol scale structure elucidation approach (Molinski et al. 2009; Molinski, 2010). Such methods promise to greatly accelerate cyclic NRP screening and may illuminate a vast resource for the discovery of pharmaceutical agents (Li and Vederas 2009).

The first automated mass spectrometry (MS)–based approach to sequencing cyclic peptides correctly sequenced two out of six Tyrocidines analyzed by Ng et al. (2009). While the correct sequences for four other Tyrocidines were highly ranked, Ng et al. (2009) came short of identifying them as the highest-scoring candidates. Leao et al. 2010, and Liu et al., (2009b) recently applied the algorithm from Ng et al. (2009) for analyzing new cyclic peptides. In Leao et al. (2010), the authors study peptides produced by the cyanobacterium *Oscillatoria sp.* that inhibit the growth of green algae and demonstrated that they function in a synergistic fashion (i.e., mixtures of these analogous peptides are needed to inhibit green algal growth). This observation emphasizes the importance of studying various peptide variants and calls for the development of a technology able to simultaneously sequence all peptides produced by a single organism.
Our first attempt to sequence cyclic NRPS from *Oscillatoria sp.* via MS using the algorithm described by Ng et al. (2009) was inconclusive. We (Leao et al., 2010) resorted to purification of the most abundant peptide with the goal to sequence it via 2D NMR (purification of individual NRPs is often difficult since various NRP variants have similar physiochemical properties). This amounted to a large effort that involved applications of various NMR technologies (including HSQC, HMBC, COSY, and NOESY) but still failed to identify some inter-residue dependencies. Applications of both NMR and MS to finally sequence four compounds using NRP-Dereplication algorithm from Ng et al. (2009) was inconclusive. We (Leao et al., 2010) resorted to purification of the most abundant peptide with the goal to sequence it via 2D NMR (purification of individual NRPs is often difficult since various NRP variants have similar physiochemical properties). To validate our first attempt, we sequenced many known members of the Tyrocidine family as well as some still unknown Tyrocidine variants. Finding new Tyrocidine variants is surprising since this family has been studied for sixty years now. We further sequenced a previously unknown family of NRPs isolated from a bacterial strain that produces natural products with anti-asthma activities (named *Reginamides*). To validate these new sequences (obtained from a single mass spectrometry experiment), we analyzed one of them (named Reginamide A) using (rather time consuming) NMR experiments. The mass spectrometry approach revealed the sequence of masses with molecular composition (C_6H_3NO, $C_6H_{11}NO$, $C_6H_{11}NO$) that was matched by NMR as the cyclic peptide AIIKIFLI with structure shown in Figure 1c. We emphasize that NMR confirmation of a compound with a known sequence

<table>
<thead>
<tr>
<th>Peptide</th>
<th>The highest-scoring correct 7-tag (among all generated tags)</th>
<th>Rank</th>
</tr>
</thead>
<tbody>
<tr>
<td>Tyc A</td>
<td>$[99+114]$</td>
<td>$[113+147]$</td>
</tr>
<tr>
<td>Tyc A1</td>
<td>$[99+128]$</td>
<td>$[113+147]$</td>
</tr>
<tr>
<td>Tyc B1</td>
<td>99</td>
<td>128</td>
</tr>
<tr>
<td>Tyc C</td>
<td>99</td>
<td>114</td>
</tr>
<tr>
<td>Tyc C1</td>
<td>99</td>
<td>128</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>Pair</th>
<th>The highest-scoring correct 7-tag (among all generated tags)</th>
<th>Rank</th>
</tr>
</thead>
<tbody>
<tr>
<td>Tyc A/A1</td>
<td>$[99+114/128]$</td>
<td>$[113+147]$</td>
</tr>
<tr>
<td>Tyc B/B1</td>
<td>99</td>
<td>114/128</td>
</tr>
<tr>
<td>Tyc C/C1</td>
<td>99</td>
<td>114/128</td>
</tr>
<tr>
<td>Tyc A/B</td>
<td>99</td>
<td>114</td>
</tr>
<tr>
<td>Tyc B/C</td>
<td>99</td>
<td>114</td>
</tr>
<tr>
<td>Tyc A1/B1</td>
<td>99</td>
<td>128</td>
</tr>
<tr>
<td>Tyc B1/C1</td>
<td>99</td>
<td>128</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>Family</th>
<th>Sequences (10-tags)</th>
<th>MS</th>
<th>WMS</th>
<th>Rank</th>
</tr>
</thead>
<tbody>
<tr>
<td>Tyrocidines</td>
<td>99</td>
<td>114</td>
<td>113</td>
<td>147</td>
</tr>
<tr>
<td></td>
<td>99</td>
<td>114</td>
<td>113</td>
<td>147</td>
</tr>
<tr>
<td></td>
<td>99</td>
<td>114</td>
<td>141</td>
<td>119</td>
</tr>
<tr>
<td></td>
<td>99</td>
<td>114</td>
<td>113</td>
<td>147</td>
</tr>
</tbody>
</table>
(derived by MS) is much easier than NMR sequencing of a completely unknown compound. The crux of our approach is the analysis of the entire spectral network Bandeira et al. (2007) of multiple Tyrocidines/Reginamides (Fig. 4b, c and Tables 2 and 3) rather than analyzing each Tyrocidine/Reginamide isomer separately. The derived sequences of the Reginamides represent the first automated sequencing of a cyclic peptide family before NMR and highlights the future role that mass spectrometry may play in sequencing cyclic peptides. MS-CyclicPeptide software is available from the NCRR Center for Computational Mass Spectrometry at http://proteomics.ucsd.edu

2. RESULTS

Spectral datasets. We analyzed Tyrocidine, Cyclomarin, and Reginamide families of cyclic peptides.

The Cyclomarins represent a family of cyclic heptapeptides with anti-inflammatory activity, isolated from a marine Streptomyces strain (Fenical et al. 1995; Sugiyama et al. 2002; Schultz et al. 2008). The structure of Cyclomarin A is shown in Figure 1b. We sequenced four variants of the Cyclomarins that differ in a single amino acid residue.

The Reginamides represent a newly isolated family of cyclic octapeptides isolated from a marine Streptomyces strain that also produces secondary metabolites with anti-asthma activities (Splenocins). Multiple variants of Reginamide isomers were sequenced using MS. Due to limited quantities of these cyclic peptides and severe separation challenges, it was only possible to purify one of the variants (named Reginamide A) for validating the derived sequences by NMR. Multi-dimensional NMR analysis confirmed the sequence of Reginamide A, derived by our multiplex sequencing algorithm.

Sequencing of individual peptides. Below we describe an algorithm for sequencing individual cyclic peptides. The goal of this algorithm is not improving the method of Ng et al. (2009), but rather proposing the ground for multiplex peptide sequencing, something that the algorithm from Ng et al. (2009) is not suited for.

Consider the cyclic peptide VOLFPFNQY (Tyrocidine A) with integer masses (99, 114, 113, 147, 97, 147, 147, 114, 128, 163). We will interchangeably use the standard notation VOLF... and the sequence of rounded masses (99' 114' 113' 147'... to refer to a peptide. One may partition this peptide into three parts as OLF-PFF-NQYV with integer masses 374, 391 and 504 respectively. In general, a k-partition is a decomposition of a peptide P into k subpeptides with integer masses $m_1 \ldots m_k$ (we refer to mass $\sum_{i=1}^{k} m_i$ as the parent mass of peptide P). A k-tag of a peptide P is an arbitrary partition of mass(P) into k integers. A k-tag of a peptide P is correct if it corresponds to masses of a k-subpartition of P, and incorrect otherwise. For example, (374, 391, 504) is a correct 3-tag, while (100, 1000, 169) is an incorrect 3-tag of Tyrocidine A.

<table>
<thead>
<tr>
<th>PM</th>
<th>Tag</th>
<th>Score</th>
<th>Comment</th>
</tr>
</thead>
<tbody>
<tr>
<td>1269</td>
<td>99</td>
<td>114</td>
<td>113 147 97 147 147 114 128 163</td>
</tr>
<tr>
<td>1283</td>
<td>99</td>
<td>128</td>
<td>113 147 97 147 147 114 128 163</td>
</tr>
<tr>
<td>1291</td>
<td>99</td>
<td>114</td>
<td>113 147 97 186 147 147 97 128 163</td>
</tr>
<tr>
<td>1292</td>
<td>99</td>
<td>114</td>
<td>113 147 97 186 131 114 128 163</td>
</tr>
<tr>
<td>1306</td>
<td>99</td>
<td>128</td>
<td>113 147 97 186 147 114 112 163</td>
</tr>
<tr>
<td>1308</td>
<td>99</td>
<td>114</td>
<td>113 147 97 186 147 114 128 163</td>
</tr>
<tr>
<td>1322</td>
<td>99</td>
<td>128</td>
<td>113 147 97 186 147 114 128 163</td>
</tr>
<tr>
<td>1331</td>
<td>99</td>
<td>114</td>
<td>113 147 97 186 147 114 128 163</td>
</tr>
<tr>
<td>1345</td>
<td>99</td>
<td>128</td>
<td>113 147 97 186 147 114 128 186</td>
</tr>
<tr>
<td>1347</td>
<td>99</td>
<td>114</td>
<td>113 147 97 186 186 114 128 163</td>
</tr>
<tr>
<td>1361</td>
<td>99</td>
<td>128</td>
<td>113 147 97 186 186 114 128 163</td>
</tr>
<tr>
<td>1370</td>
<td>99</td>
<td>114</td>
<td>113 147 97 186 186 114 128 186</td>
</tr>
<tr>
<td>1384</td>
<td>99</td>
<td>128</td>
<td>113 147 97 186 186 114 128 186</td>
</tr>
</tbody>
</table>

The spectra were dereplicated using (known) Tyrocidines A, A1, B, B1, C, and C1 by applying the multitag algorithm described in Figure 3. Four of the sequences are reported previously (see Table S12). For one spectrum with previously reported parent mass, 1292 Da, our reconstruction slightly differs from that of [1].
A (linear) subtag of a cyclic k-tag $Tag = (m_1, \ldots, m_k)$ is a (continuous) linear substring $m_i \cdots m_j$ of the k-tag (we assume $m_i \cdots m_j = m_i \cdots m_k m_1 \cdots m_j$ in the case $j < i$). There are $k(k-1)$ subtags of a k-tag. The mass of a subtag is the sum of all elements of the subtag and the length of a subtag is the number of elements in the subtag. We define $\Delta(Tag)$ as the multiset of $k(k-1)$ subtag masses. For a peptide P, the theoretical spectrum of P is defined as $\Delta(P)$. For example, the theoretical spectrum of a cyclic peptide $AGPT = (71Da, 57Da, 97Da, 101Da)$ consists of 12 masses (57, 71, 97, 101, 128, 154, 172, 198, 225, 229, 255, and 269).

The problem of sequencing a cyclic peptide from a (complete and noiseless) spectrum corresponds to the Beltway Problem (Skiena et al. 1990) and can be stated as follows:

Cyclic Peptide Sequencing Problem.

- **Goal:** Given a spectrum, reconstruct the cyclic peptide that generated this spectrum.
- **Input:** A spectrum S (a set of integers).
- **Output:** A cyclic peptide P, such that $\Delta(P) = S$.

While the Beltway Problem is similar to the well-studied Turnpike Problem (Skiena and Sundaram, 1994; Cieliebak et al., 2005), the former is more difficult than the latter one (Skiena et al. 1990). Moreover, de novo sequencing of cyclic peptides is much harder than the (already difficult) Beltway Problem. Indeed, the real spectra are incomplete (missing peaks) and noisy (additional peaks). Table S2 represents an experimental spectrum of Tyrocidine A and illustrates that while the experimental spectrum captures many masses from the theoretical spectrum (45 out of 90 masses), it also contains 30 other masses (corresponding to noisy peaks and neutral losses). The limited correlation between the theoretical and experimental spectra makes the spectral interpretation difficult.

Given a tag Tag and an experimental spectrum S (represented as a set of integer masses), we define $\text{Score}(Tag, S)$ as the number of elements (masses) shared between $\Delta(Tag)$ and S (ignoring multiplicities of elements in $\Delta(Tag)$). For example, for the 3-tag $Tag = (374, 391, 504)$ of Tyrocidine A, $\text{Score}(Tag, S) = 5$, since the spectrum S contains 5 out of 6 elements in $\Delta(Tag) = (374, 391, 504, 765, 878, 895)$.

The problem of sequencing a cyclic peptide from an incomplete and noisy spectrum can be stated as follows:

Cyclic Peptide Sequencing Problem from Incomplete/Noisy Spectrum.

- **Goal:** Given an incomplete and noisy spectrum, reconstruct the cyclic peptide that generated this spectrum.
- **Input:** A spectrum S (a set of integers) and an integer k (peptide length)
- **Output:** A cyclic peptide P of length k, such that $\text{Score}(P, S)$ is maximized among all cyclic peptides of length k.

A tag is **valid** if all its elements are larger than or equal to 57 (minimal mass of an amino acid). A valid $(k+1)$-tag derived from a k-tag Tag by breaking one of its masses into 2 masses is called an **extension** of
For example, a 4-tag (374, 100, 291, 504) is an extension of a 3-tag (374, 391, 504). All possible tag extensions can be found by exhaustive search since for each \(k - \text{tag}(m_1 \ldots m_k) \) there exist at most \(\sum_{i=1}^{k} m_i \) extensions.

Our algorithm for sequencing individual peptides starts from scoring all 2-tags and selecting \(t \) top-scoring \(k \)-tags, where \(t \) is a parameter. It further iteratively generates a set of all extensions of all top-scoring \(k \)-tags, combines all the extensions into a single list, and extracts \(t \) top scoring extensions from this list. Table 1a shows the reconstructed 7-tags for the Tyrocidine family and illustrates that the highest-scoring tags are incorrect for most Tyrocidines. However, by simultaneously sequencing pairs of spectra of related peptides, one can achieve better results. For the sake of simplicity, we illustrate how our approach works with integer amino acid masses. However, with available high precision mass spectrometry data we are able to derive the elemental composition of each amino acid (see Text S5).

Furthermore, we describe an algorithm for combining information from all high scoring tags to generate a spectral profile (Fig. 2) that compactly represents all high-scoring tags (similar to sequence logos (Schneider and Stephens, 1990). Each Tag = \((m_1 \ldots m_k) \) with \(\sum_{i=1}^{k} m_i = M \) defines an \(M \)-dimensional boolean vector \(\text{Tag} \) with 1s at \(k \) positions \(\sum_{j=1}^{k} m_j \) for \(1 \leq j \leq k \). For example, a tag \((3,2,4)\) defines a vector \(001010001\). Given a vector \(x = x_1 \ldots x_M \), we define its \(i \)-shift as the vector \(x_M - j + x_M + j - i + 2 \ldots x_M x_j \ldots x_M - j \) and its reversal as the vector \(x_M - j \ldots x_M - j \). We define the reversed \(i \)-shift as the reversal of the \(i \)-shift. For example, 2-shift of \(001010001 \) is \(010010100 \), and reversed 2-shift is \(001010010 \). Given vectors \(x \) and \(y \), we define \(\text{alignment}(x, y) \) as a shift or reversed shift of \(x \) with maximum dot-product with \(y \). For \(x = 001010001 \) and \(y = 101000000 \), \(\text{alignment}(x, y) = 101000100 \).

Our algorithm for constructing the spectral profile (generated from a spectrum with parent mass \(M \)) starts from ordering \(t \) high-scoring \(k \)-tags \(\text{Tag}_1 \ldots \text{Tag}_t \), in the decreasing order of their scores and defines \(T_0 \) as an \(M \)-dimensional vector with all zeros. It proceeds in \(t \) steps, at each step aligning the tag \(\text{Tag}_i \) against the vector \(T_{i-1} \). At step \(i \), it finds \(\text{alignment}(\text{Tag}_i, T_{i-1}) \) between \(\text{Tag}_i \) and \(T_{i-1} \) and adds it to \(T_{i-1} \) to form \(T_i = \text{alignment}(\text{Tag}_i, T_{i-1}) + T_{i-1} \). After \(t \) steps, the algorithm outputs the vector \(\frac{T_t}{t} \) as the spectral profile.

For example, for Tyrocidine A, the two 7-tags with the highest scores are \(\text{Tag}_1 = (114, 147, 244, 260, 111, 119, 274) \) and \(\text{Tag}_2 = (114, 147, 244, 291, 80, 133, 260) \). After the first step, we form a vector \(T_1 = \text{Tag}_1 \) with 1s at positions 114, 261, 505, 765, 876, 995 and 1269. At the second step, we align \(\text{Tag}_2 \) and \(T_1 \) and form a vector \(T_2 \) with 1s at positions 765, 995, 796, 1009 and 2s at positions 114, 261, 505, 876, and

![FIG. 2](image-url)
1269. Repeating these steps for 100 high-scoring tags for Tyrocidine A results in the spectral profile shown in Figure 2a. Table S4 provides the annotations of the spectral profiles for Tyrocidine A, B and C.

Sequencing of peptide pairs. We define a spectral pair as spectra S and S' of peptides P and P' that differ by a single amino acid. Consider a spectral pair (S, S') and set $\delta = \text{Mass}(S') - \text{Mass}(S)$. Given a k-tag $Tag = (m_1 \ldots m_k)$ of a spectrum S and an offset δ, we define a corresponding k-tag $Tag'_{S\rightarrow S'} = (m_1 \ldots m_i + \delta \ldots m_k)$ of S' for each $1 \leq i \leq k$. For example, for $Tag = (213, 260, 244, 147, 114, 128, 163)$ of Tyrocidine A, $Tag'_{TycA\rightarrow TycAl} = (227, 260, 244, 147, 114, 128, 163)$ is the corresponding tag of Tyrocidine A1. Any k-tag of S corresponds to at most k k-tags of S', and any correct k-tag of S corresponds to (at least) one correct k-tag of S'. Given a k-tag Tag of a spectrum S, define its **PairwiseScore** as

$$\text{PairwiseScore}(Tag, S, S') = \frac{\text{Score}(Tag, S) + \max_{1 \leq i \leq k} \text{Score}(Tag'_{S\rightarrow S'}, S')}{2}$$

The algorithm for pairwise sequencing of the cyclic peptides is exactly the same as the algorithm for sequencing individual cyclic peptide but instead of using $\text{Score}(Tag, S)$ for scoring a single tag, it uses $\text{PairwiseScore}(Tag, S, S')$. Table 1b shows that while pairwise sequencing improves on sequencing of individual cyclic peptides, it does not lead to correct reconstructions of all Tyrocidines.

Identifying spectral pairs. While the described algorithm assumed that we know which spectra form the spectral pair, i.e., which peptides differ by a single substitution, such an information is not available in de novo sequencing applications. The problem of whether spectra of two linear peptides form a spectral pair was investigated by Bandeira et al., Bandeira et al. (2007). In this section we address a more difficult problem of predicting whether the spectra of two cyclic peptides form a spectral pair based only on their spectra. Our approach extends the dereplication algorithm from Ng et al. (2009) by comparing spectra of mutated peptides (rather than comparing a spectrum against a sequence of a mutated peptide) and is based on the observation that related peptides usually have high-scoring corresponding tags. A simple measure of similarity between spectra is the number of shared peaks. Given a set of k-tags TagList for a spectrum S, we define:

$$\text{MaxScore}(\text{TagList}, S) = \max_{Tag \in \text{TagList}} \text{Score}(Tag, S)$$

Given an additional spectrum S', we define:

$$\text{MaxPairwiseScore}(\text{TagList}, S, S') = \max_{Tag \in \text{TagList}} \text{PairwiseScore}(Tag, S, S')$$

Finally, given a set of k-tags TagList for a spectrum S and a set of k-tags $\text{TagList}'$ for a spectrum S', define $\Delta(\text{TagList}, \text{TagList}', S, S')$ (or, simply, $\Delta(S, S')$) as the differences between the sum of scores of the best-scoring tags for S and S' and the sum of pairwise scores of the best-scoring tag of S/S' and S'/S pairs:

$$\Delta(S, S') = \text{MaxScore}(\text{TagList}, S) + \text{MaxScore}(\text{TagList}', S') - \text{MaxPairwiseScore}(\text{TagList}, S, S') - \text{MaxPairwiseScore}(\text{TagList}', S, S')$$

It turned out that $\Delta(S, S')$ is a good indicator of whether or not peptides P and P' that produced S and S' are only one amino acid apart. Table S6 illustrates that all seven spectral pairs of Tyrocidines have Δ less than or equal to five, while for remaining pairs, Δ is greater than or equal to seven, with exception of Tyrocidine A1/C1 pair representing two substitutions at consecutive amino acids FF \rightarrow WW. Such substitutions at consecutive (or closely located) positions are difficult to distinguish from single substitutions. For example, the theoretical spectrum for FF \rightarrow WW substitutions (each with 39 Da difference in the mass of amino acids) is very similar to the theoretical spectrum of a peptide with a single substitution on either of Phe residues with 78 Da difference.

Spectral network construction. Given a set of peptides P_1, \ldots, P_m, we define their spectral network as a graph with m vertices P_1, \ldots, P_m and edges connecting two peptides if they differ by a single amino acid substitution. In reality, we are not given peptides P_1, \ldots, P_m but only their spectra S_1, \ldots, S_m. Nevertheless, one can approximate the spectral network by connecting vertices S_i and S_j if the corresponding peptides are predicted to differ by a single amino acid, i.e. if $\Delta(S, S')$ is less than a threshold. Figure 4a show the spectral network of six Tyrocidines analyzed in Ng et al. (2009).
Multiplex sequencing of peptide families. We now move from pairwise sequencing to multiplex sequencing of spectral networks of (more than two) related cyclic peptides. While we use the notion of spectral networks from Bandeira et al. (2007), the algorithm for sequencing linear peptides from spectral networks (Bandeira et al. 2007) is not applicable for sequencing cyclic peptides.

In multiplex sequencing of peptide families, we are given a set of spectra of peptides of the same length n, without knowing their amino acid sequences, and without knowing which ones form spectral pairs. Sequencing of individual cyclic peptides is capable of generating a set of candidate k-tags, that typically contains a correct tag (at least for k smaller than n). However, sequencing of individual spectra typically fails to bring the correct peptide to the top of the list of high-scoring peptides or even, in some cases, fails to place it in this list. To alleviate this problem, we analyze all spectra in the spectral network and introduce a multiplex scoring that utilizes the information from all spectra.

Below we formulate the multiplex sequencing problem. Given a spectral network G of spectra $S = (S_1, \ldots, S_m)$, we call a set of peptides P_1, \ldots, P_m G-consistent if for every two spectra S_i and S_j connected by an edge in G, P_i and P_j differ by a single amino acid:

![Multiplex Cyclic Peptide Sequencing Problem](image)

- **Goal:** Given spectra of related cyclic peptides (of the same length) and their (estimated) spectral network, reconstruct all cyclic peptides that generated this spectra.
- **Input:** Spectra $S = (S_1, \ldots, S_m)$, their (estimated) Spectral Network G, and an integer k.
- **Output:** A G-consistent set of peptide P_1, \ldots, P_m (each of length k) that maximizes $\sum_{i=1}^m \text{Score}(P_i, S_i)$ among all sets of G-consistent peptides of length k.

Let $S = (S_1, \ldots, S_m)$ be a set of spectra of m peptides forming a spectral network and let $\text{Tag} = (\text{Tag}_1, \ldots, \text{Tag}_m)$ be a multitag, which is a set of tags such that Tag_i is a k-tag of spectrum S_i (for $1 \leq i \leq m$). In Text S1, we describe multiplex scoring of multitags, taking into account dependencies between spectra in the spectral network. This is in contrast to scoring multitags as $\sum_{i=1}^m \text{Score}(\text{Tag}_i, S_i)$ that is equivalent to independent optimization of individual scores on all individual k-tags. This approach will not give any payoff in comparison to individual spectral sequencing.

MultiplexScore defined in Text S1 scores a multitag against all spectra in the spectral network. However, generating a correct multitag from m lists of t top-scoring tags in spectra S_1, \ldots, S_m is impractical since (i) the number of candidate multitags (t^m) is large, and (ii) some lists may not contain correct individual tags. We therefore generate candidate multitags from individual tags and score them against all spectra using MultiplexScore. Figure 3 describes the algorithm for generating a k-multitag from a single individual k-tag using the spectral network G. Given a candidate individual tag Tag of a spectrum S_u, $1 \leq u \leq m$, our algorithm generates a candidate multitag $\text{multitag}(\text{Tag}, u, S, G) = (\text{Tag}_1, \ldots, \text{Tag}_m)$ satisfying $\text{Tag}_u = \text{Tag}$. Note that given a tag $\text{Tag} = (m_1, \ldots, m_k)$, the (i, δ)-modification of Tag is defined as $(m_1, \ldots, m_i + \delta, \ldots, m_k)$.

We now define multiplex score on an individual tag Tag of a spectrum S_u as follows:

$$\text{MultiplexScore}(\text{Tag}, u, S, G) = \text{MultiplexScore}(\text{multitag}(\text{Tag}, u, S, G), S, G)$$

The multiplex sequencing algorithm (i) generates lists of individual tags for each spectrum in the spectral network, (ii) constructs the spectral network G, (iii) selects an individual Tag that maximizes $\text{MultiplexScore}(\text{Tag}, u, S, G)$ among all individual tags, and (iv) outputs $\text{multitag}(\text{Tag}, u, S, G)$ as the solution of the multiplex sequencing problem.

Multiplex sequencing algorithm is exactly the same as the individual sequencing algorithm, with the only difference that we use MultiplexScore here, instead of Score (individual sequencing). Again we start with high scoring 2-tags (in MultiplexScore sense), and extend them, keeping t highest scoring tags in each step. Table 1c illustrates that the multiplex sequencing algorithm sequences all six Tyrocidines studied in Ng et al. (2009) correctly.

2Since we work with estimated (rather than exact) spectral networks, the multiplex cyclic peptide sequencing may not have a solution (i.e., a set of G-consistent peptides does not exist). Given a parameter u, a set of peptides is called (G, u)-consistent if for all but u edges (S_i, S_j), P_i and P_j differ by a single amino acid. The algorithm address finding (G, u)-consistent sets of peptides for a small parameter u.
Figure 2b–d shows spectral profiles for \(t = 100 \) high scoring tags of multiplex sequencing of Q-TOF spectra of Tyrocidines, Cyclomarins, and Reginamides.

Figure 4b and Table 2 show spectral network and sequences of Tyrocidines, predicted by multiplex sequencing algorithm (using ESI-IT spectra, see Text S3 for details). Figure 4c and Table 3 show similar results for Reginamides (see Text S4 for details).

To analyze Reginamides, the Q-TOF and ESI-IT tandem mass spectrometry data was collected on both ABI QSTAR and ThermoFinnigan LTQ. In both cases, sequencing of Reginamide A resulted in a sequence of integer masses (71, 113, 113, 128, 113, 147, 113, 113). Using accurate FT spectra collected on ThermoFinnigan, we further derived amino acid masses as (71.03729, 113.08406, 113.08405, 128.09500, 113.08404, 147.06849, 113.08397, 113.08402) that pointed to amino acids Ala (71.03711), Ile/Leu (113.08406), Lys (128.09496) and Phe (147.06841) and revealed the elemental composition. These sequences were further confirmed by NMR (see Text S6).

3. METHODS

Generating mass spectra. Q-TOF tandem mass spectrometry data for Tyrocidines, Cyclomarines, and Reginamides were collected on ABI-QSTAR and ThermoFinnigan LTQ. In both cases, sequencing of Reginamide A resulted in a sequence of integer masses (71, 113, 113, 128, 113, 147, 113, 113). Using accurate FT spectra collected on ThermoFinnigan, we further derived amino acid masses as (71.03729, 113.08406, 113.08405, 128.09500, 113.08404, 147.06849, 113.08397, 113.08402) that pointed to amino acids Ala (71.03711), Ile/Leu (113.08406), Lys (128.09496) and Phe (147.06841) and revealed the elemental composition. These sequences were further confirmed by NMR (see Text S6).
Isolation of Reginamide A. CNT357F5F5 sample was obtained from a cultured marine streptomyces in five 2.8-L Fernbach flasks each containing 1 L of a seawater-based medium and shaken at 230 rpm at 27°C. After seven days of cultivation, sterilized XAD-16 resin was added to adsorb the organic products, and the culture and resin were shaken at 215 rpm for 2 hours. The resin was filtered through cheesecloth, washed with deionized water, and eluted with acetone. Pure Reginamide A eluted at 12.6 min to give 2.0 mg of pure material.

Generating NMR spectra. CD$_3$OD and C$_5$D$_5$N were purchased from Cambridge Isotope. 1H NMR, 13C NMR, 1H – 1H COSY, 1H – 1H TOCSY (mixing time 90 ms), HMBC (2J or 3J$_{H-C}$ = 7 Hz), HSQC (1J$_{H-C}$ = 145 Hz), and ROESY (mixing time = 400 ms) spectra were generated on the Bruker (AVANCE III 600) NMR spectrometer with 1.7 mm cryoprobe. All the NMR spectra are provided in the Supplementary Material.

Parameter setting. Text S7 discusses setting of parameters of the algorithm.

ACKNOWLEDGMENTS

S.P.G. thanks Fundao para a Cincia e Tecnologia, Portugal, for a postdoctoral fellowship. This work was supported by the U.S. National Institutes of Health (grants 1-P41-RR024851-01 and GM086283).

DISCLOSURE STATEMENT

No competing financial interests exist.

REFERENCES

Address correspondence to:
Dr. Pavel A. Pevzner
Department of Computer Science and Engineering
University of California San Diego
La Jolla, CA 92092

E-mail: ppevzner@cs.ucsd.edu