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Abstract

While non-linear peptide natural products such as Vancomycin and Daptomycin are among the 

most effective antibiotics, the computational techniques for sequencing such peptides are still in 

their infancy. Previous methods for sequencing peptide natural products are based on Nuclear 

Magnetic Resonance spectroscopy and require large amounts (milligrams) of purified materials. 

Recently, development of mass spectrometry-based methods has enabled accurate sequencing of 

non-linear peptide natural products using picograms of material, but the question of evaluating 

statistical significance of Peptide Spectrum Matches (PSM) for these peptides remains open. 

Moreover, it is unclear how to decide whether a given spectrum is produced by a linear, cyclic, or 

branch-cyclic peptide. Surprisingly, all previous mass spectrometry studies overlooked the fact that 

a very similar problem has been successfully addressed in particle physics in 1951. In this paper, 

we develop a method for estimating statistical significance of PSMs defined by any peptide 

(including linear and non-linear). This method enables us to identify whether a peptide is linear, 

cyclic or branch-cyclic, an important step toward identification of peptide natural products.
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Introduction

The dominant technique for sequencing cyclic peptides is nuclear magnetic resonance 

(NMR) spectroscopy, which requires large amount (milligrams) of highly purified materials 

that are often nearly impossible to obtain.1 Tandem mass spectrometry (MS/MS) provides an 

attractive alternative to NMR because it allows one to sequence a peptide from picograms of 

non-purified material. Recently, new algorithms have been developed for interpreting mass 

spectra of cyclic peptides using de novo sequencing2–4 and database search.5

MS/MS coupled with database search is the most popular method for identification of 

(linear) peptides. A database search engine selects candidate peptides from a database of 

protein sequences that match the precursor mass from a mass spectrum. Then for each 

candidate peptide, the software compares a theoretical MS/MS derived from the peptide to 

the experimental mass spectrum, and reports a peptide with best score.

In the last decade, much effort has been invested in computing statistical significance of 

Peptide Spectrum Matches (PSMs). Many of these studies stem from the pioneering paper 

by Fenyo and Beavis6 that proposed approximating the statistical significance of PSMs by 

first modeling the distribution of PSM scores (e.g. by Gumbel distribution6) and further 

using this distribution to compute p-values.7–13 Unfortunately, this approximation approach, 

while useful in many applications, often fails when one has to estimate extremely small p-

values typical for mass spectrometry (e.g. PSM p-values of the order 10−10 are often 

required to achieve 1% FDR14). Fortunately, the challenge of estimating the probability of 

extremely rare events has already been addressed by particle physicists in 1950s,15 and 

communication systems engineers in 1980s.16 However, the mass spectrometry community 

has overlooked these fundamental studies (directly relevant to mass spectrometry) resulting 

in inaccurate p-value estimation in some mass spectrometry studies.17

In the late 1940s, many top mathematicians worked on the neutron shielding problem that 

was crucial for designing nuclear facilities.18,19 In this problem, one has to compute the 

probability that a neutron, doing a random walk, would pass through a slab, an extremely 

rare event. Two general methods emerged for evaluating extremely rare events by Monte 

Carlo random sampling (using computers that became available in mid 1940s); importance 
sampling and multilevel splitting. Both were developed for nuclear-physics calculations by 

Fermi, Harris, Kahn, Metropolis, Ulam, von Neumann, and their colleagues, during the 

production of the first nuclear bomb.15,18–21 Importance sampling is based on the notion of 

modifying the underlying probability distribution in such a way that the rare events occur 

much more frequently. Multilevel splitting uses a selection mechanism to favor the 

trajectories deemed likely to lead to the rare events of interest. While importance sampling is 

the most popular rare event simulation method today, the main advantage of the multilevel 

splitting approach is the fact that it does not need to modify the probabilistic model 

governing the system. This makes multilevel splitting applicable to any system represented 

as a black box,19 and specifically applicable to mass spectrometry studies. Kahn and Harris 

solved the neutron shielding problem using multilevel splitting in 1951.15 Later, similar rare 

event estimation techniques found applications in communication systems,16 financial 

mathematics,22 air traffic management,23 and chemistry.24 However, this powerful approach 
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has never been applied to mass spectrometry. This is surprising because there is a clear 

analogy between statistical significance evaluation in mass spectrometry, and the neutron 

shielding problem, where a spectrum plays the role of a neutron, a peptide plays the role of a 

slab, and the rare event “spectrum gets a high score against a peptide” plays the role of an 

event “neutron passes through a slab”.

Currently, the dominant technique for statistical evaluation of a set of PSMs is to compute 

the False Discovery Rate (FDR) using the Target Decoy Approach (TDA).25 TDA is 

attractive for proteomics studies because it is widely applicable to different instrument 

platforms and database search algorithms. However, TDA is not applicable to non-linear 

peptide studies, because in these studies researchers usually work on a few non-linear 

peptide at a time, whereas TDA is best suited for statistical analysis of large spectral 

datasets.25 Even in the case of linear peptides, some popular database search tools are not 

TDA-compliant.26

An alternative technique is to compute a p-value for an individual PSM.17 Given a PSM 

(Peptide, Spectrum) of score t, the p-value of (Peptide, Spectrum) is defined as the fraction 

of random peptides with a score equal to or exceeding t.17 Unlike the FDR that is defined on 

a set of PSMs, the p-value is defined on a single PSM. Therefore computing the p-value is 

adequate for non-linear peptide studies, where a single or a few non-linear peptides are 

considered at a time. Since our results can be applied to both cyclic peptides (e.g. surfactin) 

and branch-cyclic peptides (e.g. daptomycin), we will use the same term ‘cyclic’ to refer to 

both cyclic and branch-cyclic peptides.

For cyclic peptide studies, computing p-values offers additional advantages. In studies of 

peptide natural products, we are given a mixture of spectra of linear and cyclic peptides, 

from which a small number of spectra of cyclic peptides should be separated and 

investigated independently. Therefore we need a method that identifies whether a given 

spectrum represents a linear or a cyclic peptide. This is difficult because different scoring 

functions are used for linear and cyclic peptides. Since scores from different scoring 

functions are not usually comparable,27,28 we need to convert them into p-values (Fig. 1).26

In the case of linear peptides, Kim et al., 200817 presented a polynomial time algorithm for 

computing p-values, called MS-GF. However, MS-GF is only applicable to scoring functions 

that can be represented as a dot-product of vectors, i.e. additive scoring functions. Moreover, 

MS-GF is only applicable to linear peptides, and no one has generalized MS-GF to non-

linear peptides yet.

Fenyo and Beavis6 constructed an empirical score distribution of low-scoring (erroneous) 

peptide identifications and extrapolated it to evaluate the p-value of high-scoring peptide 

identifications in the tail of the distribution. Similar approaches are now used in many tools, 

that provide p-value or E-value of individual PSMs, e.g. OMSSA.29 However, this approach 

was demonstrated to be inaccurate.17 While the pitfalls of such approaches are well 

recognized in genomics, they remain under-appreciated in proteomics. Waterman and 

Vingron30 argued that it is difficult to accurately estimate the extreme tails of a distribution 

in general, requiring accurate estimation of rare event probability. To do so, one may 
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consider estimating p-values by a Monte-Carlo simulation generating a population of 

millions of peptides and estimating the probability distribution of scores on this 

population.31 This approach becomes time-consuming for estimating extremely low p-

values, since it requires calculating scores of billions of randomly generated peptides for 

accurate estimation of p-values as low as 1 in a billion.

In this paper, we propose MS-DPR (MS-Direct Probability Redistribution), a new method 

for estimating p-values of PSMs based on rare event probability estimation by multilevel 

splitting. We show that MS-DPR reports p-values similar to those reported by MS-GF in the 

case of linear peptides, confirming that it accurately estimates p-values. Furthermore, we 

show that unlike MS-GF, MS-DPR can compute p-values of PSMs when an arbitrary (non-

additive) scoring function is used or when the peptide is non-linear.

Materials and Method

In contrast to importance sampling, which changes the probability laws driving the model, 

multilevel splitting15,20 constructs a Markov chain and uses a selection mechanism to favor 

the trajectories in the Markov chain deemed likely to lead to rare events. Multilevel splitting 

is composed of three steps. First, decompose the trajectories to the rare events of interest 

into shorter sub-trajectories whose probability is not so small. Second, encourage the 

realizations that take these sub-trajectories (leading to the events of interest) by giving them 

a chance to reproduce by introducing reproduction probabilities. Third, discourage the 

realizations that go in the wrong direction by killing them with some positive killing 
probability. The sub-trajectories are usually delimited by levels. Starting from a given level, 

the trajectories that do not reach the next level will not reach the rare event, but those that do 

will split into multiple copies when they reach the next level. Each copy pursues its 

evolution independently from then on. This creates an artificial drift toward the rare event by 

favoring the trajectories that go in the right direction. In the end, an unbiased estimator can 

be recovered by multiplying the contribution of each trajectory by the appropriate weight.15

While multilevel splitting has wide applicability across diverse fields, it is not clear how to 

select the reproduction and killing probabilities, and the number of offsprings in mass 

spectrometry applications. Inspired by Kahn and Harris15 and proposed by Haraszti and 

Townsend,32 Direct Probability Redistribution (DPR) is a realization of multilevel splitting 

for estimating the probability of rare states in a Markov chain. Given a Markov chain, DPR 

implicitly constructs a modified Markov chain where probabilities of states are increased by 

an arbitrary order of magnitude. For a Markov chain with n states and (unknown) 

equilibrium probabilities p1, ⋯, pn, given oversampling factors μ1, ⋯, μn, DPR constructs a 

Markov chain with (unknown) equilibrium probability 

. For example, take a two-state Markov chain 

with equilibrium probabilities p1 = 0.999 and p2 = 0.001. If we choose μ1 = 1 and μ2 = 999, 

we end up with equilibrium probability  and , illustrated in Fig. 2(A–B). If 

one decides to estimate probability distribution of Fig. 2(A) by Monte Carlo, thousands of 

simulations are required (since p2 = 0.001 is small). However, if one tries to estimate 

probability distribution of Fig. 2(B), only a few simulations are sufficient (since p1 = p2 = 

Mohimani et al. Page 4

J Proteome Res. Author manuscript; available in PMC 2017 September 08.

A
uthor M

anuscript
A

uthor M
anuscript

A
uthor M

anuscript
A

uthor M
anuscript



0.5 is not small). This contrast in the number of simulations is the key idea of DPR. Here we 

descibe how to apply DPR to the problem of estimating probability distribution of PSM 

scores.

For simplicity, we define a spectrum as a set of integer masses. A peptide of length k is 

defined as a string of k positive integers Peptide = m1m2 ⋯ mk. The mass of the peptide is 

defined as the sum of all the integers in the string. A score of a PSM (Peptide, Spectrum) is 

denoted by Score(Peptide, Spectrum). Note that the proposed algorithm works for an 

arbitrary set of amino acid alphabets, not only for the alphabet of 20 standard amino acids. 

Since nonribosomal peptides often contain non-standard amino acids, in this section we 

consider peptides in the alphabet of all integers. In the Result section we also consider the 

case of the standard 20 amino acid alphabet.

Note that while a linear peptide of length k has a unique representation m1, ⋯, mk, a cyclic 

peptide of length k can have up to k equivalent represantations. For example, peptide (3,7,1) 

could also be presented as (7,1,3) and (1,3,7). One can choose an arbitrary representation 

among these representations, e.g., the representation where the first residue has minimum 

mass.

Given Peptide = (m1, ⋯, mi, mi+1, ⋯, mk), integer residue index 1 ≤ i ≤ k, and integer mass 

−mi < δ < mi+1, we define Peptide(i,δ) as a peptide (m1, ⋯, mi + δ, mi+1 − δ, ⋯, mk). These 

peptides are called sister peptides. Note that sister peptides have equal lengths and equal 

(parent) masses, and all amino acids masses but at most two are the same (see Fig. 3(A)). 

Note that there are many alternative ways to define the notion of a sister peptide. 

RandomTransition(Peptide) is a Peptide(i,δ), where i and δ are integer random variables, i 
chosen from the uniform distribution on [1, k], and δ chosen from the uniform distribution 

on [−mi, mi+1]. Supplementary Material discusses the conditions on a RandomTransition 
that are needed for MS-DPR to work properly. We define PeptideSpace as the set of all 

peptides with length k and mass m. Consider the following Markov chain defined on 

PeptideSpace:

where Peptide0 is chosen from PeptideSpace with uniform distribution. Then the problem of 

finding probability distribution of all scores of peptides from PeptideSpace against Spectrum 
is equivalent to finding equilibrium distribution of the above Markov chain. We use the DPR 

technique to accurately estimate the total probability of all peptides with high scores (rare 

events) in this Markov chain. Figure 3(B) illustrates this Markov chain.

Assume the set of all feasible scores (called score states) is ScoreSpace = {1,…,n}, with 

(unknown) probabilities p1, ⋯, pn. Assume arbitrary oversampling factors μ1, ⋯,μn are 

given. Then the DPR approach provides a way to modify the transition probabilities such 

that in the equilibrium distribution of the resulting Markov chain, the probability of states 

with score i are oversampled by a factor μi, i.e. . 

An example of this procedure is shown in Fig. 2(C–D). Figure 4(A) shows the MS-DPR 
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algorithm, which is a modification of the original DPR algorithm.32 Glasserman et. al., 
1998,33 show that the optimal choice of μ1, ⋯,μn (with respect to reducing the number of 

trials to achieve the required accuracy for estimation of score distribution) is the one that 

makes all score states equiprobable, i.e. (μ1, ⋯, μn) = (1/p1, ⋯ 1/pn). However, since in 

practice p1, ⋯, pn are unknown beforehand, one needs their rough estimate to efficiently 

implement DPR. Our idea is to first run the algorithm with μ1 = ⋯ = μn = 1, and obtain a 

rough estimate of p1, ⋯, pn. Then we choose μk = 1/pk in the next iteration. This procedure 

is summarized in Fig. 4(B).

Results

We used the Standard Protein Mix database consisting of 1.1 million spectra generated from 

18 proteins using eight different mass spectrometers.34 For this study, we considered the 

charge 2 spectra generated by Thermo Electron LTQ where 1,388 linear peptides of length 

between 7 and 20 are identified with false discovery rate 2.5% using Sequest35 and 

PeptideProphet36 in the search against the Haemophilus influenzae database appended with 

sequences of the 18 proteins (567,460 residues). For testing MS-DPR on cyclic peptides, we 

use the dataset from the Cycloquest paper,5 that includes cyclopeptides SFTI-1 and SFT-L1 

from Helianthus annuus, as well as a linear and a cyclic peptide, SDP and SKF, from 

Bacillus subtilits.

To apply MS-DPR, we first need to define scoring functions for linear and cyclic peptides. 

Linear theoretical spectrum of a peptide Peptide = (m1, ⋯, mk), LinearSpectrum(Peptide), is 

a set of k − 1 b-ions and k − 1 y-ions, where each b-ion is the mass of a prefix of the peptide 

plus rounded H+ mass, m1 + ⋯ + mj−1 + 1, and each y-ion is the mass of a suffix of the 

peptide plus rounded H+ and H2O mass, mj + ⋯ + mk + 19. Similarly to the Cycloquest 

paper, 5 The cyclic theoretical spectrum of the peptide, CyclicSpectrum(Peptide), is defined 

as the set of masses of its k(k − 1) substrings of the peptide, mi + ⋯ + mj−1 (mi + ⋯ + mk + 

m1 + ⋯ + mj−1, if i ≥ j), illustrated in Fig. 5(A). For branch-cyclic peptide Peptide, 

BranchCyclicSpectrum(Peptide) is defined as the union of LinearSpectrum(Peptidel) and 

CyclicSpectrum(Peptidec), where Peptidel is the linear part of Peptide with cyclic tail 

assumed as a modification, and Peptidec is the cyclic part of Peptide with the linear tail 

assumed as a modification, illustrated in Fig. 5(B).

Similarly to the Cycloquest paper,5 CyclicScore(Peptide, Spectrum) and 

BranchCyclicScore(Peptide, Spectrum) are defined as the number of shared masses between 

Spectrum with CyclicSpectrum(Peptide) and BranchCyclicSpectrum(Peptide), respectively. 

For simplicity, score of linear peptide Peptide and a spectrum Spectrum, 

LinearScore(Peptide, Spectrum), is defined as the number of shared masses between 

Spectrum and LinearSpectrum(Peptide) (In our experiments we will also use advanced MS-

GF scores for linear peptides). We emphasize that while we use the same “shared peak 

count” principle, the resulting scoring functions are very different in the case of linear, cyclic 

and branch-cyclic peptides.

In addition to the p-value computed by MS-DPR (denoted by pDPR), we also compute the 

empirical p-value (denoted by pE), using a Monte Carlo approach by generating millions (or 
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even billions) of random peptides and estimating probability distribution. Moreover, pMS–GF 

stand for p-value of MS-GF software tool17 (with 20 standard amino acid assumption), 

while pGF stands for exact score probabilities computed by the generating function 

approach17 for the case of arbitrary masses of amino acids.

Figure 6 shows the evolution of μ and p in three iterations of MS-DPR. p = (p1, ⋯ pn) is the 

original probability distribution,  is the modified probability distribution, 

and μ= (μ1, ⋯ μn) is the vector of oversampling factors. p′ converges to uniform 

distribution, and p converges to the correct distribution pGF.

To evaluate the accuracy of the MS-DPR approach, we used all 1388 identifications from the 

ISB database. We compared pDPR and pGF (Fig. 7(A)), under the following assumptions: (i) 

all integers are considered as possible masses of amino acids (typical assumption for 

analyzing non-ribosomal peptides in the alphabet of arbitrary amino acid masses4), (ii) p-

values are computed under the assumption that peptides have fixed known length, and (iii) 

the shared peak count is used as score. A correlation R2 = 0.9998 between the two p-values 

shows that our method accurately estimates the probability distribution. Fig. 7(B) shows the 

comparison with the p-values computed by actual MS-GF software tool for the case of the 

standard amino acids alphabet17 (correlation of 0.9990). These small deviations of MS-DPR 

from the theoretical value are acceptable, as the accuracy of a Monte Carlo algorithm 

depends on the number of simulations.

To validate MS-DPR for cyclic peptides, we designed the following experiment. For cyclic 

peptide Peptide = (10,20,40), and the spectrum Spectrum = CyclicSpectrum(Peptide) = 

(10,20,30,40,50,60,70), CyclicScore(Peptide, Spectrum) = 7. In this case we have total of 

 peptides of length three with mass 70, and six of them (rotations and reverse 

rotations of (10,20,40)), have score 7. Therefore, the exact p-value for score 7 in this case is 

equal to , while MS-DPR returns 0.0021. Table 1 shows comparison of 

theoretical and estimated p-value for some cyclic PSM of variable length.

To validate our approach for cyclic peptides and branch-cyclic peptides in practice, we 

compared pDPR and pE for Tyrocidine A and Daptomycin A21978C2 spectra. Tyrocidine A 

is a cyclic peptide with length 10 and mass 1269.7Da, and Daptomycin A21978C2 is a 

branch-cyclic peptide with length 14 and mass 1652.8Da. Three different scores are used: 

the CyclicScore, MultiStageCyclicScore defined in the multistage de novo sequencing 

paper,4 and BranchCyclicScore. Figure 8 demonstrates that these approaches produce 

similar results for probabilities higher than 10−6.

To validate efficiency of MS-DPR in identifying whether a spectrum is from a linear, or a 

cyclic peptide, we compare each spectrum in our dataset against the corresponding 

proteome. Cycloquest,5 a database search for identification of linear and cyclic peptides 

from the mass spectra, is used for searching these peptides, and MS-DPR is used to re-rank 

top scoring PSMs given by Cycloquest. For Helianthus annuus, we used the EST database 
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described in the Cycloquest paper,5 for B. subtilis we used the genome available from 

Uniprot, and for ISB dataset, we used the 18 protein sequences. By calculating p-values of 

all PSMs, the method correctly identifies SFTI-1 and SFT-L1 as cyclic peptides with lowest 

p-values. SDP and SKF are also identified as linear and cyclic peptides with lowest p-values 

(Table 2). Among 1388 linear peptides from ISB dataset, 1358 (97.8%) are correctly 

identified as linear peptides, and 99.6% of linear peptide identifications have identical 

sequences with the ones found by the InsPecT database search tool.37 Note that the standard 

ISB dataset does not contain any cyclic peptide, and all 31 cyclic PSMs are non-significant 

(p-values assigned are larger than 0.01). Lets define plin(Spectrum) as the p-value of the 

most statistically significant linear PSM of Spectrum, and pcyc(Spectrum) as the p-value of 

the most statistically significant cyclic PSM. Figure 7(C) shows plin versus pcyc for SFTI-1, 

SFT-L1, SKF, SDP and all spectra in ISB dataset. The figure shows that MS-DPR 

distinguishes cyclic peptides from their linear counterparts.

MS-DPR takes about one second per spectrum in the non-standard amino acid case and 

about one minute per spectrum in the standard amino acid case with MS-GF score. MS-DPR 

is specifically designed for computing p-values for cyclic, branch-cyclic and other non-linear 

peptides, where no alternative tools are available. We do not suggest using MS-DPR for 

linear peptides in the case of additive scoring function, where fast analytical solution is 

available.17 However, some MS/MS database search tools use non-additive scoring function 

and compute empirical estimates of p-values or E-values. Since these estimates may be 

inaccurate,14 MS-DPR may be used for validating or correcting these estimates.

Discussion

Most of the computational techniques developed in mass spectrometry focus on linear rather 

than non-linear peptides. Hence, computational mass spectrometry has not benefited the 

field of natural products yet, where the majority of interesting peptides are cyclic or branch-

cyclic. One of the important questions in the field of peptide natural products is how to 

determine the structure (linear/cyclic/branch-cyclic) and amino acid sequence of a peptide 

from its spectrum. Since scoring functions for linear, cyclic and branch-cyclic peptides are 

very different, converting these scores to p-values is the first step toward automated MS-

based discovery of peptide natural products.

We presented MS-DPR, a method for estimating statistical significance of PSMs in mass 

spectrometry. In contrast to existing methods for estimating p-values, MS-DPR can work 

with arbitrary scoring functions and non-linear peptides. Comparison of p-values estimated 

by MS-DPR with the p-values given by the generating function approach17 validated MS-

DPR in the case of additive scoring function and linear peptides. While there is no method 

for computing exact p-value of cyclic PSMs for a comprehensive evaluation of MS-DPR in 

the case of cyclic peptides, incorporating p-values in the recently developed Cycloquest 

algorithm5 improved its performance (e.g. identification of cyclic peptide SFTI-1 missed by 

Cycloquest in previous study).

In the case of non-linear peptides, we used the shared peak count to score PSMs. While 

advanced scoring algorithms accounting for peak intensities increase the number of 
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identifications of linear peptides at a given FDR, such scoring methods are not currently 

available for non-linear peptides. This is partially due to the fact that there are not enough 

annotated non-linear peptide spectra to train scoring algorithms. Recently, the natural 

product community has started collecting large scale mass spectrometry datasets. Thus, 

development of more comprehensive scoring algorithms will be possible in the near future.

While we tested MS-DPR only on linear, cyclic, and branch-cyclic peptides, our method is 

independent of a specific peptide structure and specific score scheme used. By defining a 

proper scoring function and random mutation for each peptide structure, MS-DPR can 

convert the score to an accurate p-value.

Cycloquest web-server reporting MS-DPR p-values is available at http://cyclo.ucsd.edu. The 

source code for MS-DPR is freely available at http://proteomics.ucsd.edu.

Supplementary Material

Refer to Web version on PubMed Central for supplementary material.
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Figure 1. 
Deciding whether a peptide that produced a spectrum is linear, cyclic or branch-cyclic. 

Given a spectrum with unknown structure, we compute its score under different structure 

assumptions (e.g. linear/cyclic/branch-cyclic), and derive a p-value for each assumption. If 

one of the structures result in a very small p-value (e.g. linear structure with p-value of 

0.0001), that structure is accepted as the most likely structure.
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Figure 2. 
A) Markov chain before performing DPR, with equilibrium probabilities (0.999,0.001). B) 

Markov chain after performing DPR, with equilibrium probabilities (0.5,0.5). C) An 

example of a Markov chain with nine peptides in three score states D) Probability 

distribution after performing DPR with oversampling factors (μ1,μ2,μ3) = (1, 2,3). The states 

with decrease in probability are shown in blue, and the states with increase in probability are 

shown in red.
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Figure 3. 
A) Illustration of all sister peptides (1,3,3), (1,1,5) and (2,2,3) for the cyclic peptide (1,2,4). 

B) Illustration of the Markov chain for cyclic peptides of length 3 and mass 7. We have total 

of four different cyclic peptides, (1,1,5), (1,2,4), (1,3,3), and (2,2,3). Each random mutation 

is determined by selecting i (three cases), and δ (four cases), giving rise to a total of twelve 

equiprobable mutations. Transition probabilities between different states of the Markov 

chain, derived from the uniform mutation probabilities (1/12), are also shown for each edge 

in the Markov chain.
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Figure 4. 
(A) MS-DPR-Iteration(μ1, ⋯,μn) algorithm32 adapted for estimating statistical significance 

of PSMs. The algorithm produces peptide process Peptide0, Peptide1, ⋯, PeptideN, and their 

scores Score(Peptide0), Score(Peptide1), ⋯, Score(PeptideN), with equilibrium probability 

distribution  satisfying  for a constant c. (*) Most of the times 

μScore(Peptide′)/μScore(Peptide) is not integer. In that case Y would be a random variable, taking 

⌈μScore(Peptide′)/μScore(Peptide)⌉ with probability p = μScore(Peptide′)/μScore(Peptide) − 

⌊μScore(Peptide′)/μScore(Peptide)⌋ and ⌊μScore(Peptide′)/μScore(Peptide)⌋ with probability 1 − p. 

Note that in case of μ1 = ⋯ = μn = 1, this reduces to simple Monte Carlo estimation of 

probability distribution from N peptides. (B) MS-DPR(K) algorithm for estimating the 

probability distribution of scores. (**) While MS-DPR uses the same global variables as 

MS-DPR-Iteration, these variables are omitted for brevity.
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Figure 5. 
(A) Illustration of CyclicSpectrum(Tyrocidine). (B) Illustration of 

BranchCyclicSpectrum(Daptomycin).
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Figure 6. 
Evolution of (A) μk (B) pk for three iterations of MS-DPR. The analysis is performed for N 
= 1,000,000 simulated peptides of length 7, and a spectrum of peptide KYIPGTK from 

standard ISB database with parent mass 787. Blue, red and green plot stands for first, 

second, and third iterations respectively. In part (B) pGF is plotted by black. Note that the 

blue plot in part (B) corresponds to first iteration of MS-DPR, which simply gives the 

empirical p-value, pE. From the second iteration on, pDPR is very similar to pGF.
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Figure 7. 
(A) Comparison of −log10 of generating function p-value with MS-DPR p-value for 1388 

peptides from ISB database. Red line shows the x = y line. Correlation between the two p-

values is 0.9998. Non-standard amino acid model is used, assuming each peptide has a fixed 

known length, and peak count score. MS-GF approach17 is modified accordingly, to satisfy 

these assumptions. (B) Comparison of −log10 of the original, publicly available MS-GF p-

value with MS-DPR p-value. Correlation between the two p-values is 0.9990. Standard 

amino acid model is used, with the variable peptide length assumption and MS-GF score. 17 

(C) Comparison of −log10 of plin, versus −log10 of pcyc for SFTI-1, SFT-L2, SKF, SDP, and 

spectra from the ISB dataset. Cyclic peptides SFTI-1, SFT-L2 and SKF are shown as green 

stars, and linear peptide SDP is shown as a black star. Blue dots show spectra from ISB 

dataset, and red line shows the x = y line.

Mohimani et al. Page 18

J Proteome Res. Author manuscript; available in PMC 2017 September 08.

A
uthor M

anuscript
A

uthor M
anuscript

A
uthor M

anuscript
A

uthor M
anuscript



Figure 8. 
(A) Estimating the score distribution for PSMs formed by the cyclic peptide Tyrocidine A 

(single-stage MS). Solid line shows the distribution of scores of 109 peptides that are 

randomly generated. The dots show the MS-DPR p-values. (B) Similar results for the 

MultiStage score defined in the multistage de novo sequencing paper, 4 for 107 peptides. Red 

dashed lines represent the scores of the correct peptide. The figure shows that MS-DPR p-

values and empirical p-values are well correlated. Moreover, the p-value of the correct 

peptide is lower for multi-stage score (5e – 13) single-stage score (5e – 07), illustrating the 

advantage of multi-stage mass spectrometry. MS-DPR enables comparisons between 

arbitrary scoring functions. (C) Similar results for the score distribution for PSMs formed by 

the branch-cyclic peptide A21978C2 (single-stage MS).
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Table 1

Comparison of theoretical p-value of cyclic PSM (Peptide,CyclicSpectrum(Peptide)), with the p-value 

estimated by MS-DPR with a million simulations.

Peptide score theoretical p-value pDPR

(10, 20, 40) 7 0.0025 0.0021

(10, 20, 40, 80) 13 1.42e-05 1.35e-05

(10, 20, 40, 80, 160) 21 2.59e-08 2.49e-08

(10, 20, 40, 80, 160, 320) 31 1.45e-11 1.09e-11

(10, 20, 40, 80, 160, 320, 640) 43 2.40e-15 6.49e-15

(10, 20, 40, 80, 160, 320, 640, 1280) 57 1.15e-19 2.71e-20
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