
ARTICLE IN PRESS
0925-2312/$ - se

doi:10.1016/j.ne

�Correspond
E-mail addr

Christian.Jutten
1This work h

Center for Inter

National Scienc
Neurocomputing 71 (2008) 2330–2343

www.elsevier.com/locate/neucom
Estimating the mixing matrix in Sparse Component Analysis (SCA)
based on partial k-dimensional subspace clustering

Farid Movahedi Nainia, G. Hosein Mohimania,
Massoud Babaie-Zadeha,�,1, Christian Juttenb,1

aElectrical Engineering Department, Sharif University of Technology, Tehran, Iran
bLaboratory of Images and Signals (CNRS UMR 5083, INPG, UJF), Grenoble, France

Available online 15 February 2008
Abstract

One of the major problems in underdetermined Sparse Component Analysis (SCA) in the field of (semi) Blind Source Separation (BSS)

is the appropriate estimation of the mixing matrix, A, in the linear model X ¼ AS, especially where more than one source is active at each

instant of time. Most existing algorithms require the restriction that at each instant (i.e. in each column of the source matrix S), there is at

most one single dominant component. Moreover, these algorithms require that the number of sources must be determined in advance. In

this paper, we proposed a new algorithm for estimating the matrix A, which does not require the restriction of single dominant source at

each instant. Moreover, it is not necessary that the exact number of sources be known a priori.

r 2008 Elsevier B.V. All rights reserved.

Keywords: Underdetermined Blind Source Separation (BSS); Sparse Component Analysis (SCA); Subspace fitting
1. Introduction

Because of its many applications, the problem of Blind
Source Separation (BSS) has been extensively studied in the
last 20 years (refer for example to the books [12,6,24]). This
problem consists of separating a set of mixed signals from
their mixtures, where there are prior information neither
about the mixing system nor about the source signals
(except their statistical independence).

The quality of source separation approaches may be
significantly improved, if we pass from the totally ‘blind’
case to the semi-blind case, that is, if we take the advantage
of a very weak a priori information available about the
source signals [3]. For example, the priors ‘non-stationar-
ity’ of the source signals [16] and their ‘temporal
e front matter r 2008 Elsevier B.V. All rights reserved.

ucom.2007.07.035

ing author.

esses: mbzadeh@yahoo.com (M. Babaie-Zadeh),

@inpg.fr (C. Jutten).

as been partially funded by French Embassy in Tehran, by

national Research and Collaboration (ISMO) and by Iran

e Foundation (INSF).
correlation’ [20,4,17] have been already used in the early
literature of source separation.
Another prior information, which is relatively newer in

source separation, is ‘sparsity’ of the source signals
[11,23,5,9]. A sparse signal is a signal whose most samples
are nearly zero, and just a few percent take significant
values. Consequently, at each instant (‘time’ slot), only a
few number of sources have significant values (say they are
‘active’), and most of them are almost zero (say they are
‘inactive’). This prior information is important because of
two reasons. Firstly, in contrast to traditional source
separation methods, it permits source separation for the
case in which the number of sources exceeds the number of
sensors [5,7–9,13–15,23]. Secondly, it is a very practical
assumption for many sources: even if the sources are non-
sparse in time domain, they may be sparse in another
(linear) transformed domain. Since the mixing system is
identical in time and transformed domains (because of
linearity of the transform), the sources may be separated in
the transformed domain. For example, the speech sources
may not be sparse enough in time, but they are sparse in
time-frequency (using Short-Time Fourier Transform
¼ STFT) or time-scale (using wavelet packet) domains [11].

www.elsevier.com/locate/neucom
dx.doi.org/10.1016/j.neucom.2007.07.035
mailto:mbzadeh@yahoo.com
mailto:Christian.Jutten@inpg.fr

ARTICLE IN PRESS

−2 −1 0 1 2
−5

0

5

Second component of mixture

Fi
rs

t c
om

po
ne

nt
 o

f m
ix

tu
re

−2 −1 0 1 2
−5

0

5

Second component of mixture

Fi
rs

t c
om

po
ne

nt
 o

f m
ix

tu
re

Fig. 1. Scatter plot of first mixture versus second mixture in the case n ¼ 3

and m ¼ 2. In (a) k ¼ 1 and three data concentration directions are easily

distinguished which is equal to the number of sources. In (b) k41,

identifying the concentration directions is not easy.

F. Movahedi Naini et al. / Neurocomputing 71 (2008) 2330–2343 2331
Source separation, based on the sparsity prior, mainly
relies on the sparsity of sources, and not on their
independence. Consequently, these methods (for extracting
sparse components of the mixtures) are usually called
Sparse Component Analysis (SCA) [9].

The problem of SCA can be stated as follows. Consider
the linear model:

X ¼ AS, (1)

where A ¼ ½a1 . . . an� 2 Rm�n is the mixing matrix, S ¼

½s1 . . . sT � 2 Rn�T and X ¼ ½x1 . . . xT � 2 Rm�T are the ma-
trices of n sources and m observed signals. Each column of
S and X corresponds to an instant of ‘time’ and T is the
number of ‘time’ samples. Sparsity of source signals implies
that in each column of S, there are just a few significant
values (active sources) and most of the elements are almost
zero (inactive sources). The goal of SCA is then to estimate
A and S, only from X and the sparsity assumption. In this
paper, each column of the mixing matrix, i.e. each ai,
1pipn, is called a mixing vector.

Although the word ‘time’ is used in the above para-
graphs (‘time’ samples, instant of ‘time’ and ‘time’ slot),
and will be used in the continuation of this paper, the
above model may be in another domain, in which the
sparsity assumption holds. To see this, let T be a linear
‘sparsifying’ transform (like STFT or wavelet packet
transforms for speech signals), and the mixing system is
stated as X ¼ AS in the time domain. Then, we have
TfXg ¼ ATfSg in the transformed domain, and because
of the sparsity of TfSg, it is in the form of (1).

Generally, more than one source may be active at each
instant of time. The number of active sources at each
instant is a random variable and its average2 is denoted
by k.

The SCA problem is usually solved in two steps. The first
step is the estimation of the mixing matrix (A), and the
second step is the recovery of the source signals (S) by
knowing the mixing matrix. Note that in the under-
determined case, in which the number of sources exceeds
the number of sensors, these two problems are not
identical. In other words, knowing the mixing matrix does
not directly result in the recovery of the sources [2]. In this
paper, we address only the problem of the estimation of the
mixing matrix.

In the field of SCA, two different cases should be
distinguished for estimating the mixing matrix; single
dominant component and multiple dominant components.
In the former, the average number of active sources is
less than or approximately equal to one, and the scatter
plot of X geometrically shows the data concentra-
tion directions (see Fig. 1a). To see this, note that at
each instant we have xðtÞ ¼ AsðtÞ ¼ s1ðtÞa1 þ � � � þ snðtÞan;
1ptpT . For most instants, only one of values of si,
1pipn is dominant and the others are almost zero.
2In fact, this random variable may have non-integer average. In this

case, k is the closest integer to this average.
Consequently, in most samples, xðtÞ is in the direction of
one of the mixing vectors. Conversely, in the multiple
dominant case, the average number of active sources is
greater than one and the scatter plot of X is not sufficient
for estimating A (see Fig. 1b). Up to now, many papers
have addressed the single dominant case [21,11,5,9], while
only a few researchers have considered the multiple
dominant case [1,10,22]. In this paper, we focus on the
latter case.
In the single dominant component SCA, the observed

data in the m-dimensional scatter plot of mixtures
concentrate along the directions of n mixing vectors.
Similarly, in the multiple dominant components SCA, the
observed data concentrate around k-dimensional subspaces

ARTICLE IN PRESS

4In this case, B is a hyperplane in the three-dimensional space. Its

F. Movahedi Naini et al. / Neurocomputing 71 (2008) 2330–23432332
which are spanned by a set of k mixing vectors. In fact,
if we assume that in a time sample, only k sources,
si1ðtÞ . . . sik ðtÞ, are active and other sources are nearly zero,
then the mixture vector xðtÞ concentrates around the
k-dimensional subspace spanned by ai1 . . . aik .

xðtÞ ¼ AsðtÞ ’ si1ðtÞai1 þ � � � þ sik ðtÞaik . (2)

The total number of these subspaces is equal to Np ¼
n
k

� �
.

We call these subspaces concentration subspaces through-
out this paper. This concept is also used in [22].

The basic idea of the paper is to find these k-dimensional
concentration subspaces, and then to estimate the mixing
vectors using them. This general idea has also been used by
Washizawa et al. in [22], but with our method this goal is
achieved by another technique which has lower computa-
tional cost and lets us to solve the medium scale problems.
In fact, in our method, it is not necessary to find all Np ¼

n
k

� �
concentration subspaces. If some of these subspaces are

found mistakenly, the estimating part of the mixing matrix
is in a way robust to these errors. Moreover, contrary to
the previous approaches [1,10,22], the number of sources,
n, need not to be known in advance.

It should be emphasized that in this paper, k, the average
number of active sources, is assumed to be determined a
priori. Estimating k from the data is a subject for further
investigation, which is currently being studied in our group
and a method has been proposed in [18].

The paper is organized as follows. In the following
section, we will explain the procedure of estimating the
concentration subspaces. In Section 3, a method for
estimating the mixing vectors from the estimated concen-
tration subspaces is developed. In Section 4, the algorithm
for estimating the matrix A is finalized, while Section 5
presents various computer simulations to justify the
algorithm. After a short comment on choosing the
parameters of the algorithm in Section 6, the paper will
be concluded in Section 7.

2. Estimating concentration subspaces

In this section, we try to estimate k-dimensional
concentration subspaces. Each k-dimensional subspace
can be represented by an m by k matrix, whose columns
form an orthonormal basis for the subspace.3 In this paper,
we do not distinguish between a subspace and its matrix
representation.

Let B 2 Rm�k be the matrix representation of an arbitrary
k-dimensional subspace. We define the following function to
detect whether B is a concentration subspace or not:

f sðBÞ ¼
XT
i¼1

exp
�d2
ðxi;BÞ

2s2

� �
, (3)

where dðxi;BÞ is the distance of xi from the subspace
represented by B (the definition of this distance is presented
in Appendix A).
3Note that this representation is not unique.
For small values of dðxi;BÞ compared to s,
expð�d2

ðxi;BÞ=2s2Þ is about 1 and for large values of
dðxi;BÞ, it is nearly zero. Therefore, for sufficiently small
values of s, the above function is approximately equal to the

number of data points close to B. Moreover, if the set of
points are concentrated around several different k-dimen-
sional concentration subspaces, f has a local maximum
where B is close to the basis of each of them. These local
maxima are very strong if s is small enough. In fact, their
values are approximately equal to the number of data
samples which lie in that subspace. Therefore, by max-
imizing the function f, we actually maximize the number of
data points close to B. Now two examples are presented for
demonstrating this function.
Example 1. Consider the problem for the case n ¼ 3, m ¼ 2
and k ¼ 1 (for the plots of this example, as well as
Examples 2, 3 and 4, we have used T ¼ 2000 data samples).
In this case, there are three sources, two mixtures and only
one source is active in most instants of time. Therefore, the
observed data in the scatter plot of the first mixture versus
the second one concentrate along the directions of three
mixing vectors (see Fig. 1a).
To have a demonstration of the function f, defined in (3),

the data points near origin are first omitted (they lie in all
concentration subspaces) and the remaining points are
projected onto the surface of a unit semi-sphere (by
normalizing the data in every sample and forcing sign of
the first component to be positive. This operation does not
change the subspace of a data sample). Then, B is set equal
to ½cosðjÞ; sinðjÞ�T and f is plotted versus j for 0pjpp.
The results are shown in Figs. 2a–c for different values of
s. The histogram of data concentration versus j is also
plotted in Fig. 3.
As it is seen in the figures, for the smallest s, the function

f is similar to the histogram and not smooth; the peaks
represent the mixing vectors and can be distinguished in the
figure.
However, for the smallest s, because of the existence

of many local maxima, maximization of f is not easy. For
the medium s, f is smooth and maximization is easier. For
the largest one, the peaks are mixed and cannot be
distinguished.
Example 2. In this example, another demonstration of f,
defined in (3), for the case n ¼ 5, m ¼ 3 and k ¼ 2 is
presented. In this case, there are five mixing vectors in the
three-dimensional space. The data concentrate around
5
2

� �
¼ 10 two-dimensional concentration subspaces.

Given an arbitrary two-dimensional subspace, let B be
its matrix representation and ðx; y; zÞ be its normal vector4

representation in Cartesian coordinate. This vector can be
normal vector, by definition, is the vector on the unit sphere which is

perpendicular to the hyperplane.

ARTICLE IN PRESS

0 0.5 1 1.5 2 2.5 3
1000

1200

1400

1600

1800

2000

2200

2400

2600

φ
0 0.5 1 1.5 2 2.5 3

0

200

400

600

800

1000

φ

0 0.5 1 1.5 2 2.5 3
0

100

200

300

400

500

600

700

φ

Fig. 2. Graph of the function f ð½cosðjÞ; sinðjÞ�TÞ versus j in the case n ¼ 3, m ¼ 2 and k ¼ 1 for three different values of s. In (a) s ¼ 1, the function is

smooth and peaks are mixed. In (b) s ¼ 0:15. In (c) s ¼ 0:015, the function lacks smoothness while peaks are completely discriminated.

0 0.5 1 1.5 2 2.5 3
0

100

200

300

400

500

600

700

φ

Fig. 3. Angular histogram of the data concentration in the case n ¼ 3,

m ¼ 2 and k ¼ 1. Note the similarities between this histogram and graph

of the function f in the case s ¼ 0:015 in Fig. 2c.

F. Movahedi Naini et al. / Neurocomputing 71 (2008) 2330–2343 2333
represented by ðj; yÞ satisfying:

x ¼ sinðjÞ sinðyÞ;

y ¼ cosðjÞ sinðyÞ;

z ¼ cosðyÞ

8><
>: (4)
The function f is plotted versus j; y for 0pj; ypp and
different values of s. The results are shown in Figs. 4a and b.
Note that for larger s, f is smoother, but for smaller one,

the peak locations are better distinguishable (all 10 concen-
tration subspaces are separated). Therefore, they form a
better representation for the actual concentration subspaces.

The idea is to maximize the function f for a small value of
s, using a maximization method. However, for small s’s,
many local maxima exist which make this maximization
difficult. But even in this case, if we have a good initial
guess about the location of the maximum, then by starting
from this initial point, the maximization algorithm may
easily find the actual maximum. Our idea is then to use the
maximum obtained from the maximization of f for a larger
s, as the initial guess for the location of the maximum for
smaller s. This suggests to use a decreasing sequence of s in
order to obtain an accurate estimation.
Up to now, estimating the concentration subspaces

is discussed. The presentation of the final algorithm is
delayed to Section 4, after introducing the method of
estimating the mixing vectors from concentration subspaces
in the next section.

3. Estimating mixing vectors

Now suppose all of the k-dimensional concentration
subspaces are estimated and their representation matrices

ARTICLE IN PRESS

1000

500

0
3

2

1

0

φ

0
1 2

3

θ

500

0
3

2

1

0
0 1

2 3

θ

φ

Fig. 4. Graph of the function f in the case n ¼ 5, m ¼ 3 and k ¼ 2 for two

different values of s. In (a) s ¼ 0:1 and in (b) s ¼ 0:02. The exact location
of the actual concentration subspaces are indicated by vertical lines.

Similar to Fig. 2, by decreasing s, discrimination increases while a

decrease in smoothness is observed.
5

0
3

2

1

0
0 0.5 1 1.5 2 2.5 3

φ

θ

Fig. 5. Graph of the function g in the case n ¼ 5, m ¼ 3 and k ¼ 2 for

s ¼ 0:02. Distinguished curves represent 10 two-dimensional concentra-

tion subspaces and discriminated peaks represent five mixing vectors. The

exact location of the actual mixing vectors are indicated by added vertical

lines. Note that each mixing vector is the intersection of four concentra-

tion subspaces.

F. Movahedi Naini et al. / Neurocomputing 71 (2008) 2330–23432334
are Bi; i ¼ 1 . . .Np. This section is dedicated to estimating
the mixing vectors using these subspaces. To do this, we use
an idea similar to the idea we used in the previous section
to find the concentration subspaces.

As mentioned before, every concentration subspace is
spanned by a set of k mixing vectors. The number of
concentration subspaces which include a certain mixing
vector, equals to the number of choices of other k � 1
mixing vectors from the total n� 1 ones. Therefore, every
mixing vector lies in n�1

k�1

� �
of the subspaces. Given an

arbitrary vector v in the m-dimensional space, we define the
following function:

gsðvÞ ¼
XNp

i¼1

exp
�d2
ðv;BiÞ

2s2

� �
, (5)

where dðv;BiÞ is the distance of the vector v from the ith
estimated concentration subspace (refer to Appendix A for
the definition of this distance).

For small values of dðv;BiÞ compared to s,
exp �d2

ðv;BiÞ=2s2
� �

is about 1 and for large values of
dðv;BiÞ, it is almost zero. Thus, for sufficiently small values
of s, the function g is approximately equal to the number of

subspaces close to v. Note that the s used in this formula is
different from the previous one. In order to distinguish the
two, the one related to finding subspaces is denoted by sB
and the one related to finding mixing vectors is denoted
by sA. The next example explains the behavior of this
function.

Example 3. Here, we demonstrate the function g for the
case of example 2, in which n ¼ 5, m ¼ 3 and k ¼ 2. There
are 5

2

� �
¼ 10 concentration subspaces, all of them are pre-

sumed to be already estimated. Each mixing vector is close
to 5�1

2�1

� �
¼ 4 of these estimated subspaces.

All of the surface points of the unit semi-sphere are
spanned as follows. Each vector with Cartesian coordinate
ðx; y; zÞ is transformed to ðj; yÞ satisfying (4). The function
g is shown versus j, y for 0pj; ypp in Fig. 5. According
to (4), a two-dimensional subspace defined by equation z ¼

axþ by can be represented in this system of coordinates by
equation:

cosðyÞ ¼ a sinðjÞ sinðyÞ þ b cosðjÞ sinðyÞ.

Therefore, any arbitrary two-dimensional subspace is
transformed to a curve in this figure. In fact, each
distinguished curve in the figure represents one of the 10
concentration subspaces.
In this case every mixing vector lies in four subspaces.

Therefore, the absolute maxima that are located in the
intersection of four curves represent the mixing vectors and
are easily distinguishable in the figure. Note that the values
of these peaks are nearly 4, which is equal to the number of
concentration subspaces in which they lie.

ARTICLE IN PRESS

5

0

3

2

1

0
0 0.5 1.0 1.5 2 2.5 3

φ

θ
1.5

1

0.5

0

3

2

1

0
0 0.5 1 1.5 2 2.5 3

φ

θ

Fig. 6. Graph of the function h in the case n ¼ 5, m ¼ 3, k ¼ 2 and q ¼ 4

for two different values of s. In (a) s ¼ 0:15 and in (b) s ¼ 0:03. The exact
location of the actual mixing vectors are indicated by added vertical lines.

As usual, value of s experiences a trade-off between smoothness and

discrimination.

5Conditions required for the approximation is discussed in [19,

pp. 70–73].

F. Movahedi Naini et al. / Neurocomputing 71 (2008) 2330–2343 2335
As observed in the figure, there exists local maxima
which make it difficult to design a maximization algorithm
for estimating the mixing vectors. In general, each mixing
vector lies in n�1

k�1

� �
concentration subspaces, but other

vectors are close to relatively smaller number of concen-
tration subspaces, say less than q concentration subspaces.
Consequently, in order to identify the mixing vectors
correctly, we detect the vectors which lie in at least q

concentration subspaces.
Note that if q is set to n�1

k�1

� �
then all of the concentration

subspaces must be estimated accurately. However, the
value of q can be set much less in some experiences, and
the method accomplishes correctly without requiring all the
concentration subspaces to be estimated.

Moreover, in determining the mixing vectors, instead of
working with the function g (as defined in (5)), we define
the following function to better discriminate between the
picks corresponding to mixing vectors, and to force each
detected mixing vector to lie in at least q concentration
subspaces:

hsðvÞ ¼
X

1pi1o���oiqpNp

usðv;Bi1 Þ � � � usðv;Biq Þ, (6)

where

usðv;BÞ ¼ expð�d2
ðv;BÞ=2s2Þ

and dðv;BÞ is the distance of vector v from subspace B. For
sufficiently small values of s, if v is close to B then usðv;BÞ
is about 1 and otherwise it is almost zero. Thus,

usðv;Bi1 Þ � � � usðv;Biq Þ �
1 if v is close to all Bi1 � � �Biq ;

0 otherwise:

�

This means that hsðvÞ is significant if at least one of the
summands is significant, i.e. if v is near to the correspond-
ing subset of q subspaces. Therefore, this function can be
utilized for finding mixing vectors. Note that direct
computation of (6) is too time-consuming, and should be
avoided. Instead, a fast algorithm for computing (6) is
presented in Appendix B. The function h is shown for the
same case of example 2, with q ¼ 4 and different values of
s in Fig. 6.

As it can be observed in the figures, the mixing vectors
are more distinguishable and the maximization process is
simpler for detecting these maxima.

4. Final algorithm of identifying the mixing matrix

As mentioned in Sections 2 and 3, two decreasing
sequences of s are used in this algorithm. We denote them
by ½s1 . . . sR�. However, their lengths and their values can
be different.

Usually, the estimation of all the Np ¼ ð
n
k
Þ concentration

subspaces is not necessary. It is sufficient to estimate as
many concentration subspaces to guarantee the existence
of any mixing vectors in at least q of the estimated
concentration subspaces.
Now presume that NB of the k-dimensional concentra-
tion subspaces are chosen randomly from the set of all Np

concentration subspaces. Because each concentration sub-
space contains exactly k of the mixing vectors, the
probability that a certain mixing vector is included in a
certain subspace is k=n. Therefore, the probability that it is
included in less than q of the NB subspaces is

Xq�1
r¼0

NB

r

� �
k

n

� �r

1�
k

n

� �ðq�1�rÞ

� G
q� 1�NBðk=nÞffi
NBðk=nÞð1� k=nÞ

p
 !

,

(7)

where G is the Gaussian Cumulative Distribution Function.5

NB should be chosen so large to make the above
probability less than a certain amount a. This results in a

ARTICLE IN PRESS
F. Movahedi Naini et al. / Neurocomputing 71 (2008) 2330–23432336
rough estimation of NB which can be used in the
experimental results for both cases of determined and
undetermined number of sources.

Now we present the algorithm for estimating the mixing
matrix. This algorithm is composed of two parts: identify-
ing the concentration subspaces (Section 4.1) and then
identifying the mixing vectors (Section 4.2). Suitable choice
of the parameters and their effect on the performance are
discussed in Section 6.

4.1. Algorithm for identifying the concentration subspaces

The idea of the following algorithm is to start from
randomly different starting points, with the hope of finding
different maxima. To achieve this, instead of trying NB

starting points, we use LB starting points (where LB is
several times greater than NB), and then we take NB of
them which have greater f sR

(note that we are taking
advantage that the actual number of concentration
subspaces Np ¼ ð

n
k
Þ is large). Using this method, if some

of the detected subspaces are false (because of getting
trapped in local maxima), they will be ignored, too.
(1)
6N

algo

simp
7A

subs

certa
Remove samples of the mixture matrix X which are
near origin. In these samples, all of the sources are
probably inactive. Then normalize every column of X
(normalization simplifies the distance measurement).
(2)
 Assume an appropriate value of a and estimate NB in
(7). Choose a suitable decreasing sequence of ½s1 . . . sR�.
(3)
 For j ¼ 1 . . .LB

(a) Choose a random starting subspace (an orthonor-
mal m by k matrix BjÞ.

(b) Set i ¼ 1.
(c) Start with Bj and maximize the function f si

using
the steepest ascent method with gradients presented
in Appendix C.6 Orthonormalize Bj after each
iteration. Update Bj to the argument that max-
imizes this function.

(d) If ioR (where R is the number of elements of the
sequence½s1 . . . sR�), increment i and go back to (c).
ote

rithm

lex m

rep

pace

in a
(4)
 Omit the repeated subspaces.7
(5)
 Choose NB of the obtained subspaces that have the
largest value of the function f sR

.

8Similar to the first part of the algorithm, maximization method is not
At the end of algorithm, it would be still possible that
some of the detected subspaces are incorrect, and the next
part of the algorithm (estimating A from these B’s) should
be insensitive to these errors. However, it should be noted
that even these incorrectly detected subspaces still contain
some information about the mixing vectors, because they
are usually close to at least some of the mixing vectors. This
that the maximization method is not an essential part of the

. For example, we have successfully used the Nelder–Mead

ethod (the fminsearch function of MATLAB).

etition is detected if the distance of the currently obtained

from one of the previously obtained subspaces is less than a

mount. This distance is explained in Appendix A.
fact, in addition to the fact that accurate estimation of all
the subspaces is not a necessity for the second part of the
algorithm, gives us a great degree of freedom in the first
part. This means that the error in the first part of the
algorithm may be compensated in the second part to some
extent. This is one of the most essential advantages of the
proposed algorithm.

4.2. Algorithm for identifying mixing vectors

Similar to the previous subsection, in order to improve
the performance of the algorithm, instead of estimating n

mixing vectors, LAbn vectors are estimated, after which
the repeated vectors are omitted and actual mixing vectors
are extracted via error detection process. This approach is
especially advantageous for the cases where the exact
number of sources is not known in advance.
(1)
an e
9A

App
10

one
11

requ
Choose a suitable decreasing sequence of ½s1 . . . sR�.

(2)
 For j ¼ 1 . . .LA

(a) Choose a random normalized m by 1 vector vj.
(b) Set i ¼ 1.
(c) Start with vj and maximize the function hsi

using
the steepest ascent method with gradients presented
in Appendix C.8 Normalize vj after each iteration.
Update vj to the argument that maximizes this
function.

(d) If ioR, increment i and go back to (c).
ssent

vec

endi

A re

is les

The

est t
(3)
 Error detection process: Omit the vectors that are near
to less than q of the estimated subspaces.9
(4)
 Omit the repeated vectors.10
Note that the parameter n (number of sources) is not
directly used in the above algorithm (the only usage of n is
in the estimation of NB, that is, the number of concentra-
tion subspaces we detect in the first part). If n is not known,
the above algorithm can be equally applied. In this case,
NB can be selected, for example, based on a priori known
upper bound for n. As will be seen in the experimental
results, obtaining more than n (actual number of) mixing
vectors is rare, but obtaining less than n vectors happens
more frequently, specially where the actual mixing vectors
are close enough.

5. Experimental results

In this section, five simulations are presented to justify
the algorithm.11 In all of these simulations, sparse sources
are generated independently and identically distributed
ial part.

tor is considered near to a subspace if their distance (presented in

x A) is less than a certain amount.

petition is detected if the angle between the vector and another

s than a certain amount.

MATLAB codes of the proposed method is available via email

o authors.

ARTICLE IN PRESS

0 20 40 60 80 100
9

10

11

12

Simulation number

N
um

be
r o

f o
bt

ai
ne

d
ve

ct
or

s

0 20 40 60 80 100
0

0.002

0.004

0.006

0.008

0.01

0.012

Simulation number

E
rr

or
 in

 e
st

im
at

ed
 m

ix
in

g
ve

ct
or

s

Fig. 7. Efficiency of the overall algorithm for all simulations in the case

n ¼ 12, m ¼ 6, k ¼ 2 and T ¼ 3900 for 100 different simulations. In (a)

number of obtained vectors in each simulation is shown. In some cases

fewer than 12 vectors are obtained and type one error has occurred. In (b)

error in obtaining the mixing vectors is measured using (9). Negligible

errors show type two error has never occurred.

12In the cases where n0on vectors are obtained, the formula

E ¼ min
P2X
kAP� Âk2 (10)

is used where X is the set of all n0 by n full-rank matrices in which all

elements are zero except an element equal to 1 in each row.

F. Movahedi Naini et al. / Neurocomputing 71 (2008) 2330–2343 2337
(i.i.d) by the sum of Gaussians model [2]:

si�pNð0;sonÞ þ ð1� pÞNð0;soff Þ, (8)

where p is the probability of activity of the sources (and
hence k � np). son and soff are the standard deviations of
the sources in active and inactive modes, respectively. In
order to have sparse sources, the conditions sonbsoff and
p51 should be applied. soff is to model a white noise. In all
simulations, the values son ¼ 1 and soff ¼ 0:01 have been
used.

Generally, two types of error may occur in this method.
We say type one error has occurred if one of the mixing
vectors is not obtained by the method. This error occurs if
that mixing vector is not close to at least q of the estimated
subspaces. Type one error may be generated because of two
reasons. First reason is that a (the acceptable probability of
not having a mixing vector in the detected subspaces)
is usually chosen greater than zero. Therefore, there is
always a chance that a mixing vector is not close to q of
the estimated subspaces. The second reason is error in
subspace estimation process.

We say an error of type two has occurred if one of the
obtained vectors is inaccurate, i.e. not close to any of actual
mixing vectors. As will be seen, type two error has been
rarely observed in our simulations.

In all of the simulations mixing matrices are generated
randomly and each column of them is normalized. In most
simulations, LA has been set equal to 20n (unless specified
otherwise).

In the use of the algorithm of Section 4.1, two subspaces
are detected identical if their distance (presented in
Appendix A) is less than 0.1, and in the use of the
algorithm of Section 4.2, a vector is considered to lie in a
subspace if its distance (presented in Appendix A) from
that subspace is less than 0.03. In this section two vectors
are called identical if their angle is less than 61. This
criterion forces any two mixing vectors to have a minimum
angle of 61. In all simulations, the mixing matrices which
did not obey this criteria were omitted.

All simulations were performed in MATLAB 7 environ-
ment using an Intel Pentium 4, 2.4GHz processor with
1GB RAM under Microsoft Windows XP operating
system.

Experiment 1: performance

In this experiment, the efficiency of our algorithm is
demonstrated. One hundred simulations are performed for
the case n ¼ 12, m ¼ 6, k ¼ 2 (p ¼ 0:167) and T ¼ 3900.
Parameters were chosen as follows: q ¼ 4, a ¼ 0:01
(resulting in NB ¼ 58), LB ¼ 10NB ¼ 580, sB ¼ ½0:15;
0:075; 0:037; 0:018� and sA ¼ ½0:1; 0:05; 0:025; 0:0125�.

Fig. 7a shows the number of vectors obtained by the
algorithm in all simulations. Note that in none of these
simulations more than 12 vectors are obtained. However,
in 11 of them less than 12 vectors are estimated which
indicate the occurrence of type one error.
In all cases, the obtained vectors are compared with the
mixing vectors. For the cases in which 12 vectors were
obtained, the criterion

E ¼ min
P2P
kA� ÂPk2 (9)

is used, where P is the set of all permutation matrices (this
is the same criterion used in [22]). This estimation error is
shown in Fig. 7b for all simulations.12 The process took
less than 3minutes in average for estimating each mixing
matrix. The fact that these errors are negligible implies that
type two error has not occurred. The strict error detection

ARTICLE IN PRESS

0.015

0.02

n)

F. Movahedi Naini et al. / Neurocomputing 71 (2008) 2330–23432338
process in Section 4.2, usually prevents occurrence of any
type two error.

In the cases where less than 12 vectors were obtained,
type one error has occurred. These cases can also be
avoided by increasing LB, or the number of samples (if
possible) or changing the sequence of sB or sA.
0 5 10 15
0

0.005

0.01

Mixing vector number (1...15)

A
ng

le
 (r

ad
ia

0 5 10 15 20 25 30
0

0.005

0.01

0.015

0.02

Mixing vector number (1...30)

A
ng

le
 (r

ad
ia

n)
Experiment 2: middle scale problem

To show that the method is capable of solving medium
scale problems, two simulations are performed. In the first
simulation, the parameters are set to n ¼ 15, m ¼ 7, k ¼ 3,
T ¼ 9000, q ¼ 15, NB ¼ 180, LB ¼ 3NB ¼ 540, sB ¼
½0:15; 0:075; 0:037; 0:018� and sA ¼ ½0:1; 0:05; 0:025; 0:012�,
whereas in the second experiment, they are set to n ¼ 30,
m ¼ 15, k ¼ 2, T ¼ 8500, q ¼ 4, NB ¼ 250, LB ¼ 3NB ¼

750, sB ¼ ½0:3; 0:15; 0:075; 0:037; 0:018� and sA ¼ ½0:1; 0:05;
0:025; 0:0125�. The process took less than 40minutes for the
first case and less than two hours for the second case.

To measure the accuracy of the estimation, the angle
between each estimated vector and its corresponding actual
mixing vector (i.e. inverse cosine of their dot product) is
shown in Figs. 8a and b. As it is seen in these figures, in
both cases the algorithm has successfully detected all the
mixing vectors. For example, in the second simulation,
elements of the most erroneous estimated mixing vector
and their actual values are shown in Fig. 9.

As it is seen in this experiment, neither type one nor type
two error has occurred. All obtained vectors were close to
one of the mixing vectors with high accuracy. Even larger
scale problems can be solved by providing the algorithm
with more time.
Fig. 8. The angle (in radian) between the mixing vectors and their

corresponding estimation in middle scale problems. In (a) n ¼ 15, m ¼ 7

and k ¼ 3. In (b) n ¼ 30, m ¼ 15 and k ¼ 2.

0 5 10 15
−0.4

−0.2

0

0.2

0.4

0.6

Elements of the mixing vector and its estimate

Fig. 9. Comparison between the most erroneous obtained vector and its

corresponding mixing vector, for the second case (n ¼ 30, m ¼ 15 and

k ¼ 2) in Experiment 2. The crosses show the values of elements of the

obtained vector and the squares show their actual values.
Experiment 3: unknown number of sources

As mentioned previously, the proposed method does not
directly depend on the exact number of sources. Therefore,
even in cases where n is not known, estimating A (and
hence n) is still possible.

In these cases, occurrence of type one error is not
detectable. Therefore, to choose a suitable NB in this case,
an upper bound for n is necessary. Using this upper bound
and (7), a suitable NB can be chosen. In order to prevent
occurrence of type one error, LB should be chosen several
times larger than NB.

To demonstrate the algorithm in the case in which n is
unknown, the parameters are set as follows. n is presumed
less than 12 (upper bound for n is equal to 12), a ¼ 0:01
resulting in NB ¼ 58, q ¼ 4, sA ¼ ½0:1; 0:05; 0:025; 0:0125�,
sB ¼ ½0:2; 0:1; 0:05; 0:025; 0:0125� and LB ¼ 10NB ¼ 580.
Seven different mixtures were given to the algorithm as
input, all having m ¼ 6, k ¼ 2 and T ¼ 1300. The mixtures
were produced by mixing 6–12 number of sources,
respectively.

The algorithm was able to correctly identify the number
of sources in all of the cases. The mixing matrix was also

ARTICLE IN PRESS

100

F. Movahedi Naini et al. / Neurocomputing 71 (2008) 2330–2343 2339
estimated accurately. The estimation errors, as defined in
(9), are shown in the following table:
ns
13The reason is that, the samples are distrib

concentration subspaces randomly. Considering the

of the function f require the dense concentration of

them, T should be at least several times greater tha
80at
io
n
 Estimation error
l e
st

im
6
 0.0180

60

sf
u
7
 0.0142
ce
s

8
 0.0184

40su

c

9
 0.0107
r o
f
10
 0.0101
20be
11
 0.0086
um
12
 0.005
0 4 8 12 16 20 24 28 32 36 40 44 48 52 56 60
0

N

T / Np
These small errors imply the correct identification of the
mixing matrices. This experiment shows that the method is
able to estimate the mixing matrix without knowing the
exact number of sources.
0 4 8 12 16 20 24 28 32 36 40 44 48 52 56 60
0

0.01

0.02

0.03

0.04

Av
er

ag
e

er
ro

r o
f s

uc
ce

ss
fu

l e
st

im
at

io
ns

T / Np

Fig. 10. The effect of number of data samples on the performance. In (a),

the number of successfully estimated mixing metrics in 100 simulation

versus T is shown. In (b), average error using (9) is shown for the

successful cases. Note that more than 80% of the simulations were

successfully performed for the case T=NpX12.
Experiment 4: effect of the number of data samples on the

performance

In this experiment the effect of the number of data
samples, T, on the performance of the algorithms is
analyzed. Performance can be measured using two criteria,
the number of simulations in which the mixing matrix is
successfully estimated and the error in these estimations.

In order to estimate the concentration subspaces,
number of data samples should be proportional to Np.

13

In this experiment, 15 different values of T between 4Np to
60Np were examined.

For each value of T, 100 simulations were performed
in the case n ¼ 12, m ¼ 6 and k ¼ 2. Parameters were
chosen as follows: q ¼ 4, NB ¼ 58, LB ¼ 10NB ¼ 580,
sA¼½0:1; 0:05; 0:025; 0:0125�, sB¼½0:15; 0:075; 0:037; 0:018�.
The number of successfully estimated mixing matrices for
each value of T is shown in Fig. 10a. Average error of the
successfully estimated mixing matrices is also shown in
Fig. 10b.

For small values of T, type two error occurred. However,
the percentage of type two error occurrence was less than
5%. For large values of T, type two error never occurred.
Experiment 5: comparison with existing methods

In this experiment the algorithm is applied to the same
case presented in [22], as one of the most recent algorithms,
where n ¼ 5, m ¼ 3 and k ¼ 2. Two kinds of sources were
employed in this experiment. The first kind was the same as
sources used in [22], where at each instant, exactly two
sources were active and the inactive sources were forced to
be zero. However, phase shifts were added to the sources to
make them uncorrelated. The second kind of sources were
uted among all the

fact that strong peaks

data samples around

n Np.
generated according to the general model of sum of
Gaussians (8). The parameters were chosen as follows:
q ¼ 4, LB ¼ 400, sA ¼ ½0:1; 0:05; 0:025; 0:0125�, sB ¼ ½0:05;
0:025; 0:0125� and NB ¼ Np ¼ 10. The number of data
samples for the first kind and the second kind of sources
were chosen equal to 1000 and 400, respectively (as
opposed to 2000 data samples used in [22]). The algorithm
was capable to find all of the mixing vectors and the mixing
matrix estimation error, as defined in (9), was 0.0056 and
0.0058, for the first kind and the second kind of the
sources, respectively; as opposed to 0.2018 in [22]. The
process took about 160 s for the first kind of the sources
and 25 s for the second kind. The mixing matrix and its
estimation using the second kind of sources are shown as
follows:

A ¼

0:5525 0:3919 0:5707 0:3934 0:6904

0:6863 �0:6066 0:5166 0:8634 �0:6007

0:4730 0:6917 �0:6383 �0:3158 0:4032

2
64

3
75,

ARTICLE IN PRESS
F. Movahedi Naini et al. / Neurocomputing 71 (2008) 2330–23432340
Â ¼

0:5536 0:6930 �0:3908 0:3892 �0:5712

0:6829 �0:5980 �0:8644 �0:6083 �0:5154

0:4765 0:4027 0:3165 0:6917 0:6388

2
64

3
75.

As observed from this experiment, the proposed method is
capable of achieving a better estimation of the mixing
matrix using fewer number of data samples.
14A method for estimating k has been proposed in [18].
6. Comments on choosing the parameters

As observed in Section 4, the proposed algorithm
possesses parameters such as decreasing sequences of sB,
sA, q, LB, LA and a which should be suitably chosen by the
user. The choice of suitable values of the parameters and
their effects are discussed in the following.

Suitable choice of starting elements of sB and sA are
essential factors in the performance. If the starting element
of sB is chosen too large, then peaks of the function f get
mixed. This can be detected by the user through the
observation of a large number of repeated subspaces in
the output of the first part of the algorithm (in these cases,
the number of different estimated subspaces is much less
than NB). On the other hand, if the starting element is
chosen too small, it makes the function f having a lot of
local maxima. This results in a lot of incorrect estimated
subspaces (in these cases, the number of repeated subspaces
is very small).

If the starting element of sA is chosen too large, then
peaks of the function h get mixed. In this case the number
of repeated vectors in the output of the second part is very
large. On the other hand, if the starting element is chosen
too small, it makes the function h having a lot of local
maxima. This results in a lot of incorrect estimated vectors
(in these cases the number of repeated vectors is very
small).

As observed in the experimental results, the algorithm
usually accomplishes properly with a starting s between
0.05 and 0.5 (in the cases where columns of the matrix X

are normalized in advance). Other elements of the sequence
of sB and sA are not that much essential in the
performance. As observed in the experimental results, the
decreasing sequences of sB and sA can usually be chosen a
geometrical sequences with a scale factor of 0.5. The
suitable stopping element of sequences is related to the
power of the additive noise. However, a sufficiently small
value of stopping s always works. In the experimental
results, (having soff ¼ 0:01), a value of stopping s close to
0.01 is always adequate.

As mentioned previously, LB and LA should be chosen
several times larger than NB and n (or its upper bound),
respectively. In all experimental results, LB ¼ 10NB and
LA ¼ 20n usually works. Choosing much larger values of
LB and LA, increases computation cost without improving
the performance. However, sufficiently large values of LB

and LA, decreases the sensitivity of the algorithm to some
parameters such as sB, sA and T.
Another parameter in the algorithm of Section 4.2 is q.
The optimum theoretical value of q has not been obtained.
If q is chosen too small, many incorrect vectors can pass the
error detection process in the second part which results in
type two error. On the other hand, if q is chosen too large,
many concentration subspaces must be estimated (to
prevent type one error) which makes the algorithm more
time-consuming. In our experimental results, we observed
that q ¼ 4 and q ¼ n are adequate for the cases k ¼ 2 and
k ¼ 3, respectively.

7. Discussion and conclusion

Most existing algorithms assume single dominant case at
each instant for estimating the mixing matrix in SCA.
Moreover, the number of sources is assumed to be known
in most of them. In this paper, we presented a method
which omits these two restrictions. On the contrary, in our
simulations we assumed that the averaged number of active
sources, k, is known in advance.14

In Section 2, we observed the fact that graph of the
function f is similar to the histogram of data concentration
when s is sufficiently small. In fact, as stated in Section 2,
for sufficiently small s’s, the value of f in (3) is equal to the
number of data points in the subspace specified by B.
Consequently, in Fig. 2, f is the same as the histogram
(note the similarity of Figs. 2c and 3). Therefore, (3) can be
seen as a generalization of histogram: firstly, it is smoother
(with the degree of smoothness under our control. To find
its maximum for small s’s, we decrease the smoothness
gradually to escape from local maxima) and secondly, it is
applicable to higher dimensions.
Some other related works in solving the SCA problem

are [1,22,21]. In [1], K-SVD is introduced which is
essentially a generalization of the K-means that fulfils the
requirements of solving the multiple dominant case. This
method works for the middle scale problem, is fast,
achieves acceptable performance, requires relatively few
number of data samples and depends on few parameters.
However, the number of sources, n, is required to be
known a prior. Moreover, in many cases, some of the
mixing vectors may be detected incorrectly (both type one
and type two error). The method presented in [22] is based
on estimation of the concentration subspaces. It solves the
multiple dominant case. However, it cannot work in
medium scale. In [21], a generalization of the histogram
method is introduced that takes advantage of information
obtained from more than two mixtures. However, single
dominance is still an essential assumption. Our method is
also a generalization of the histogram method. However,
instead of linear concentration assumption like in [21], we
have planar concentration assumption like in [22]. Another
difference is in the way of escaping from getting trapped in
local maxima which is a suffering in all histogram-like
methods.

ARTICLE IN PRESS
F. Movahedi Naini et al. / Neurocomputing 71 (2008) 2330–2343 2341
Unfortunately, like many SCA methods, our method
suffers from exponential growth in computation cost. The
reason is that in order to estimate the concentration
subspaces, the number of data samples should be propor-
tional to Np. Therefore, it is burdensome to solve the
problem in the large scales. The large scale case still
remains an open problem.

As observed in the experimental results, correct choice of
the parameters prevents any occurrence of type two error.
This means that any vector estimated by the algorithm
would be one of the mixing vectors with a high probability:
the algorithm rarely gives an incorrect vector and is
trustable. However, some mixing vectors might not be
found in the first try, either because of the badly chosen
parameters, or because some of the actual mixing vectors
are close to each other, or because of lack of sufficient data
samples.

As mentioned before, the presented method uses a
decreasing sequence of s for estimating the concentration
subspaces. The first and largest s in the sequence is an
essential factor in the quality. A suitable starting s depends
on many factors such as n, m and k. If chosen too large, it
may cause mixed peaks and if too small many local
maxima exist. The decreasing sequence of s’s are also
important.

The performance of our method depends on several
factors, such as the condition number of mixing matrix,
the number of samples, the number of observations, the
average number of active sources, the sequences of sA and
sB. A proper estimation of these sequences is an essential
factor in the performance. An optimum choice of the
parameters is still an open problem.
Appendix A

In the algorithm it is required to calculate the distance
between a subspace and a vector or two subspaces. Let
B ¼ ½b1 . . . bk� be the matrix representation of a k-dimen-
sional subspace of the m-dimensional space, that is,
fb1; . . . ; bkg is an orthonormal basis for this subspace. Let
v be a unit-norm m-dimensional vector. Then, as a measure
of the distance between subspace B and vector v, we have
used:

dðv;BÞ ¼

ffi
1� ½ðv � b1Þ

2
þ � � � þ ðv � bkÞ

2
�

q
, (11)

where v � bi represents the dot product of bi and v.
Now let B ¼ ½b1 . . . bk� and B̂ ¼ ½b̂1 . . . b̂k� be two

k-dimensional subspaces of m-dimensional space repre-
sented in orthonormal form. Then, as a measure of the
distance between these two subspaces we have used:

dðB; B̂Þ ¼

ffi
d2
ðb1; B̂Þ þ � � � þ d2

ðbk; B̂Þ

q
,

where dðbi; B̂Þ is the distance between vector and subspace,
stated above.
Appendix B

In (6) it is necessary to calculate an expression of the formX
1pi1o���oiqpN

ai1 . . . aiq ,

where N ¼ Np and aj ¼ usðv;BjÞ; 1pjpNp. If directly

computed, it requires a cost computation of order N
q

� 	
.

However, by implementing a recursive algorithm, cost
computation can be decreased to the order of Nq.
By defining:

sumqða1 . . . aN Þ ¼
X

1pi1o���oiqpN

ai1 . . . aiq ,

we have

sumqða1 . . . aN Þ ¼ sumqða1 . . . aN�1Þ

þ aN � sumq�1ða1 . . . aN�1Þ.

Using this formula the recursive algorithm can be designed.

Appendix C

As mentioned in Section 4, this method is based on the
maximization of two functions, f s and hs. This appendix is
dedicated to the development of the steepest ascent
methods for their maximization.
To maximize the function f sðBÞ using the steepest ascent

method, its matrix gradient with respect to B ¼ ½b1 . . . bk�

can be presented by

qf s

qB
¼

qf s

qb1
� � �

qf s

qbk

� �
,

where

qf s

qbj

¼
XT
t¼1

q
qbj

fexpð�d2
ðxt;BÞ=2s2Þg

¼ �
1

2s2
XT
t¼1

qd2
ðxt;BÞ

qbj

expð�d2
ðxt;BÞ=2s2Þ (12)

for 1pjpk.
The vector gradient of d2

ðxt;BÞ versus bj can be
calculated using (11):

qd2
ðxt;BÞ

qbj

¼ �2xtðxt � bjÞ

and by utilizing this equation in (12) the final formula can
be achieved

qf s

qbj

¼
1

s2
XT
t¼1

xtðxt � bjÞ expð�d2
ðxt;BÞ=2s2Þ; 1pjpk.

(13)

This equation can be utilized to compute gradient in
each iteration of the steepest ascent maximization. Each
iteration of this algorithm is composed of:
�
 Set bj bj þ mðqf s=qbjÞ=T for 1pjpk using (13).

ARTICLE IN PRESS
F. Movahedi Naini et al. / Neurocomputing 71 (2008) 2330–23432342
�
 Orthonormalize B; Set B BðBTBÞ�1=2 (refer to [12,
Section 6.5]).

In our simulation, we have chosen the step size of the
algorithm (m) proportional to s2, to have smaller step sizes
for more complicated functions (which is the case for
smaller s’s).

Note that orthonormality of the matrix representation is
assumed in (11) and it is necessary to orthonormalize B in
each iteration.

We have also used the steepest ascent method also for
maximizing the function hsðvÞ versus v. The details are as
follows.

Using (6), the function h can be represented by

hsðvÞ ¼
X

1pi1o���oiqpNp

Yq

j¼1

expð�d2
ðv;Bij Þ=2s

2Þ

 !

so:

qhs

qv
¼

X
1pi1o���oiqpNp

Xq

l¼1

q
qv
fexpð�d2

ðv;Bil Þ=2s
2Þg

0
BB@

0
BB@

�
Yq

j¼1
jal

expð�d2
ðv;Bij Þ=2s

2Þ

1
CCA
1
CCA.

By rearranging the sums:

qhs

qv
¼
XN

l¼1

q
qv
fexpð�d2

ðv;Bil Þ=2s
2Þg

�
X

1pi1o���oiq�1pNp

lefi1...iq�1g

Yq�1
j¼1

expð�d2
ðv;Bij Þ=2s

2Þ

0
BBB@

1
CCCA (14)

and using (11)

q
qv
fexpð�d2

ðv;BÞ=2s2Þg

¼
1

s2
Xk

i¼1

biðbi � vÞ

 !
expð�d2

ðv;BÞ=2s2Þ. (15)

To calculate (14), the method introduced in Appendix B
can be applied. In fact:

X
1pi1o���oiq�1pNp

lefi1...iq�1g

Yq�1
j¼1

expð�d2
ðv;Bij Þ=2s

2Þ

¼ sumq�1fexpð�d2
ðv;BiÞ=2s2Þj1pipN ; ialg.

This simplification makes the steepest ascent method
computationally possible for the function h.
Similar to the previous maximization, a suitable step m
proportional to s2 has been chosen and the following steps
should be performed in each iteration.
�
 Set v vþ mðqhs=qvÞ=kqhs=qvk2 using (14) and (15).

�
 Normalize v by setting v v=kvk2.

In the experimental results, in the first maximization m is
set to 104s2 and in the second, m is set to 100s2. Another
reason for choosing m proportional to s2 is that, in (13) and
(15) there is a factor of 1=s2 in calculation of the gradient
and by choosing m proportional to s2 it would be
compensated.
References

[1] M. Aharon, M. Elad, A. Bruckstein, The K-SVD: an algorithm for

designing of overcomplete dictionaries for sparse representation,

IEEE Trans. Signal Process. 54 (11) (2006) 4311–4322.

[2] A.A. Amini, M. Babaie-Zadeh, C. Jutten, A fast method for sparse

component analysis based on iterative detection-projection, in:

Proceedings of 26th International Workshop on Bayesian Inference

and Maximum Entropy Methods in Science and Engineering

(MaxEnt), 2006.

[3] M. Babaie-Zadeh, C. Jutten, Semi-blind approaches for source

separation and independent component analysis, in: Proceedings of

ESANN’06, 2006, pp. 301–312.

[4] A. Belouchrani, J.-F. Cardoso, Maximum likelihood source separa-

tion by the expectation-maximization technique, in: NOLTA 95, Las

Vegas, USA, 1995, pp. 49–53.

[5] P. Bofill, M. Zibulevsky, Underdetermined blind source separation

using sparse representations, Signal Processing 81 (2001) 2353–2362

hciteseer.ist.psu.edu/bofill01underdetermined.htmli.

[6] A. Cichocki, S.-i. Amari, Adaptive Blind Signal and Image

Processing: Learning Algorithms and Applications, Wiley, New

York, 2002.

[7] D.L. Donoho, For most large underdetermined systems of linear

equations the minimal l1-norm solution is also the sparsest solution,

Technical Report hhttp://www-stat.stanford.edu/�donoho/Reports/

2004/i, 2004.

[8] D.L. Donoho, M. Elad, Optimally sparse representation from

overcomplete dictionaries via l1 norm minimization, Proc.

Natl. Acad. Sci. 100 (5) (2003) 2197–2202 hciteseer.ist.psu.edu/

pati93orthogonal.htmli.

[9] P.G. Georgiev, F. J. Theis, A. Cichocki, Blind source separation and

sparse component analysis for over-complete mixtures, in: Proceed-

ings of ICASSP’04, Montreal, Canada, 2004, pp. 493–496.

[10] P.G. Georgiev, F.J. Theis, A. Cichocki, Sparse component analysis

and blind source separation of underdetermined mixtures, IEEE

Trans. Neural Networks 16 (4) (2005) 992–996.

[11] R. Gribonval, S. Lesage, A survey of sparse component analysis for

blind source separation: principles, perspectives, and new challenges,

in: Proceedings of ESANN’06, 2006, pp. 323–330.

[12] A. Hyvarinen, J. Karhunen, E. Oja, Independent Component

Analysis, Wiley, New York, 2001.

[13] T. Lee, M. Lewicki, M. Girolami, T. Sejnowski, Blind source

separation of more sources than mixtures using overcomplete

representations, IEEE Signal Process. Lett. 4 (4) (1999) 87–90.

[14] Y. Li, A. Cichocki, S. Amari, Sparse component analysis for blind

source separation with less sensors than sources, in: ICA2003, 2003,

pp. 89–94.

[15] Y. Li, A. Cichocki, S. Amari, Analysis of sparse representation and

blind source separation, Neural Computation 16 (6) (2004)

1193–1234.

citeseer.ist.psu.edu/bofill01underdetermined.html
http://www-stat.stanford.edu/~donoho/Reports/2004/
http://www-stat.stanford.edu/~donoho/Reports/2004/
http://www-stat.stanford.edu/~donoho/Reports/2004/
citeseer.ist.psu.edu/pati93orthogonal.html
citeseer.ist.psu.edu/pati93orthogonal.html

ARTICLE IN PRESS
F. Movahedi Naini et al. / Neurocomputing 71 (2008) 2330–2343 2343
[16] K. Matsuoka, M. Ohya, M. Kawamoto, A neural net for blind

separation of nonstationary signals, Neural Networks 8 (3) (1995)

411–419.

[17] L. Molgedey, H. Schuster, Separation of a mixture of independent

signals using time delayed correlations, Phys. Rev. Lett. 72 (23)

(1994) 3634–3637.

[18] N. Noorshams, M. Babaie-Zadeh, C. Jutten, Estimating the mixing

matrix in Sparse Component Analysis (SCA) based on converting a

multiple dominant to a single dominant problem, in: Proceedings of

the Seventh International Conference on Independent Component

Analysis and Signal Separation (ICA2007), Lecture Notes in

Computer Science, vol. 4666, September 2007, London, pp. 397–405.

[19] A. Papoulis, Probability and Statistics, Prentice-Hall, Englewood

Cliffs, NJ, 1990.

[20] L. Tong, V. Soon, R. Liu, Y. Huang, AMUSE: a new blind

identification algorithm, in: Proceedings of ISCAS, New Orleans,

USA, 1990, pp. 1784–1786.

[21] L. Vielva, Y. Pereiro, D. Erdogmus, J. Principe, Inversion techniques

for underdetermined BSS in an arbitrary number of dimensions, in:

Proceedings of the 6th International Conference on Independent

Component Analysis and Signal Separation (ICA’03), Nara, Japan,

2003, pp. 131–136.

[22] Y. Washizawa, A. Cichocki, On-Line k-plane clustering learning

algorithm for sparse component analysis, in: Proceedings of

ICASSP’06, Toulouse, France, 2006, pp. 681–684.

[23] M. Zibulevsky, B.A. Pearlmutter, Blind source separation by sparse

decomposition in a signal dictionary, Neural Computation 13 (4)

(2001) 863–882 hciteseer.ist.psu.edu/article/zibulevsky01blind.htmli.

[24] M. Zibulevsky, B. Pearlmutter, P. Bofill, P. Kisilev, Blind source

separation by sparse decomposition, in: Independent Component

Analysis: Principles and Practice, Cambridge, 2001.

Farid Movahedi Naini was born in Mashad, Iran,

in 1985. He received his B.Sc. degree in commu-

nication systems from Sharif University of

Technology, Tehran, Iran, in 2007. He is

currently a Master student in the Department

of Computer and Communication Sciences at the

Ecole Polytechnique Fédérale de Lausanne

(EPFL). His research interests include commu-

nication systems and signal processing.
G. Hosein Mohimani was born in Bushehr, Iran,

in 1985. He is currently a B.Sc. double major

student of Electrical Engineering and Mathe-

matics, at Sharif University of Technology. His

research interests include signal processing, com-

munication systems, information theory and

coding.
Massoud Babaie-Zadeh received the B.S. degree

in electrical engineering from Isfahan University

of Technology, Isfahan, Iran, in 1994, and the

M.S. degree in electrical engineering from Sharif

University of Technology, Tehran, Iran, in 1996,

and the Ph.D. degree in signal processing from

Institute National Polytechnique of Grenoble

(INPG), Grenoble, France, in 2002 (for which,

he received the best Ph.D. thesis award of INPG).

Since 2003, he has been an assistant professor
of the Department of Electrical Engineering at Sharif University of

Technology, Tehran, Iran. His main research areas are statistical signal

processing, blind source separation (BSS) and independent component

analysis (ICA).

Christian Jutten received the Ph.D. degree in 1981

and the Docteur ès Sciences degree in 1987 from

the Institut National Polytechnique of Grenoble

(France). He taught as associate professor in

Ecole Nationale Supérieure d’Electronique et de

Radioélectricité of Grenoble from 1982 to 1989.

He was visiting professor in Swiss Federal

Polytechnic Institute in Lausanne in 1989, before

to become full professor in Université Joseph

Fourier of Grenoble, more precisely in Polytech’-
Grenoble Institute. He is currently associate director of the images and

signals laboratory (100 people). For 25 years, his research interests are

blind source separation, independent component analysis and learning in

neural networks, including theoretical aspects (separability, source

separation in nonlinear mixtures), applications in signal processing

(biomedical, seismic, speech) and data analysis. He is author or co-author

of more than 40 papers in international journals, 16 invited papers and

100 communications in international conferences. He has been associate

editor of IEEE Transactions on Circuits and Systems (1994–95), and

co-organizer with Dr. J.-F. Cardoso and Prof. Ph. Loubaton of the 1st

International Conference on Blind Signal Separation and Independent

Component Analysis (Aussois, France, January 1999). He is currently

member of a technical committee of IEEE Circuits and Systems Society on

blind signal processing. He is a reviewer of main international journals

(IEEE Transactions on Signal Processing, IEEE Signal Processing Letters,

IEEE Transactions on Neural Networks, Signal Processing, Neural

Computation, Neurocomputing, etc.) and conferences in signal processing

and neural networks (ICASSP, ISCASS, EUSIPCO, IJCNN, ICA,

ESANN, IWANN, etc.).

citeseer.ist.psu.edu/article/zibulevsky01blind.html

	Estimating the mixing matrix in Sparse Component Analysis (SCA) based on partial k-dimensional subspace clustering
	Introduction
	Estimating concentration subspaces
	Estimating mixing vectors
	Final algorithm of identifying the mixing matrix
	Algorithm for identifying the concentration subspaces
	Algorithm for identifying mixing vectors

	Experimental results
	Experiment 1: performance
	Experiment 2: middle scale problem
	Experiment 3: unknown number of sources
	Experiment 4: effect of the number of data samples on the performance
	Experiment 5: comparison with existing methods

	Comments on choosing the parameters
	Discussion and conclusion
	References

