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Abstract—Finding the sparse solution of an underdetermined columns. Then, we can seek the sparsest solution of the USLE
system of linear equations has many applications, espedialitis ~ As = x given by
used in Compressed Sensing (CS), Sparse Component Analysis
(SCA), and sparse decomposition of signals on overcomplete (Py): min|slp st As=x, (1)
dictionaries. We have recently proposed a fast algorithm, aled

Smoothed® (SLO), for this task. Contrary to many other sparse  where || - || is simply the number of nonzero components
recovery algorithms, SLO is not based on minimizing the* norm, (conventionally called the/” norm although it is not a true

but it tries to directly minimize the ¢° norm of the solution. The In atomic d it . it . | which
basic idea of SLO is optimizing a sequence of certain (contirous) norm). In atomic decomposition viewpointis a signal whic

cost functions approximating the ¢° norm of a vector. However, IS to be decomposed as a linear combination of the signals
in previous papers, we did not provide a complete convergeec ¢ = 1,...,m, wherea;’s are called ‘atoms’, and\ is called

proof for SLO. In this paper, we study the convergence propeties  the ‘dictionary’ over which the signal is to be decomposed
of SLO, and show that under a certain sparsity constraint in 7).

terms of Asymmetric Restricted Isometry Property (ARIP), and . . . . .
with a certain choice of parameters, the convergence of SLo A SystemA is said [12] to satisfyjunique Representation

to the sparsest solution is guaranteed. Moreover, we studyhe Property (URP), if anyn x n sub-matrix of A is invertible.
complexity of SLO, and we show that whenever the dimension It is known [12], [13], [14] that for any system satisfying
of the dictionary grows, the complexity of SLO increases wit — URP, the solution to({1) is unique, that is if the a solutign
the same order as Matching Pursuit (MP), which is one of the satisfying|[so|lo < n/2 exists, then any other solutienhas

fastest existing sparse recovery methods, while contrarptMP, its .
convergence to the sparsest solution is guaranteed underregin  lISllo > 1/2. Therefore, under URP assumption, we can talk

conditions which are satisfied through the choice of paramets. about ‘the sparsest solution’.
Solving [1) using a combinatorial search is NP-hard. Many
Index Terms—Compressed Sensing (CS), Sparse Component@lternative algorithms have been proposed to solve thib-pro
Analysis (SCA), Sparse Decomposition, Atomic Decompogiti, lem. Two frequently used approaches are Matching Pursuit
Over-complete Signal Representation, Sparse Source Sepaéion.  (MP) [11] and Basis Pursuit (BP)[8], which have many
variants. MP is a fast algorithm but it cannot be guaranteed t
find the sparsest solution. BP is based on repla¢ingith the
¢! norm which can be minimized using Linear Programming
techniques. BP is computationally more complex than MP, but
PARSE solution of an Underdetermined System of Linedrcan find the sparsest solution with high probability, pded
Equations (USLE) has recently attracted the attentidhis solution is sufficiently sparsé [13[, [14[][2[. [15].
of many researchers from different viewpoints, because ofln [16] and [17], we proposed an algorithm for solving
its potential applications in many different problems. gt i(d), called Smoothed® (SLO), which provides a fast solution
used, for example, in Compressed Sensing (C$) [1], [2}jthin a small Euclidean distance of the sparsest solution.
[8], underdetermined Sparse Component Analysis (SCA) afile main idea was to approximate tHenorm by a smooth
source separatior |[4]][5],][6],][7], atomic decompositiofunction (hence the name “smoothéd”). More precisely,
on overcomplete dictionaries 1[8][ ][9], decoding real fields|o is approximated by a continuous funcflom — F,(s),
codes|[[10], etc. whereo determines the quality of approximation: the larger
Let x be a knownn x 1 vector andA = [ai,...,a,,] be o0, the smootherF, () but the worse the approximation to
a knownn x m matrix with m > n, wherea;’s denotes its ¢°; and visa versa. Hence, the solution tends to the sparsest
solution wheno — 0. Therefore, the objective underlying
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« Initialization: Set3y = Afx. Choose a suitable decreasing A. Restricted Isometry and Overview of the Results
sequence for: [o1...07]. _ . .
e Forj=1,....J: The analysis is developed here using the Asymmetric Re-
1) Leto = o, _ _ o stricted Isometry Constants (ARIC$) [19], [20], [21], [22}
2) '\gf‘é‘ém;? ggézr)]t?'”ble“ t0As = x, using L iterations of order to relate our work t@'-minimization. The asymmetric
Ip_ SN k-restricted constant§™™ andé;"** are defined as the smallest
— Initialization: s = §;_1. . e
—For¢=1,2,...,L nonnegative numbers satisfying
a) Lets < s + (uo?)VFE,(s). .
b) Projects back onto the feasible s§s|As = x}: (1 - 51?1“)”5”% < ||AS||g < (1 + 51?&)()”5”% 2)
s s—Af(As —x). for anys € R™ with ||s]|o < k.
3) Sets; =s. Let s be the solution of[{1) anflso|lo = k. We show that
« Final answer i = 3. SLO recovers this solution provided that
adfiiay + | All2 < a (3)

Fig. 1. Basics of the SLO algorith [17AT stands for the Moore-Penrose
pseudo inverse oA (ie. AT £ AT(AAT)~). for any a > 1, in which ||A||, denotes the Euclidean norm
of A, and [2k«] denotes the nearest integer greater than
or equal to2ka . More precisely, we derive a family of
sufficient conditions for the performance of SLO that depend
maximum of F,(-) is used as a starting point to locate th@n parametet.
maximum of F,,(-) for the next (smallery using a steepest The ARICs are easy to calculate exactly for small scale
ascent approach. Since the value @fhas only slightly Systems, but the complexity grows exponentially as theescal
decreased, the maximizer &t (-) for this newo is not too grows. In fact, the value of ARICs depends on singular values
far from the maximizer ofF,(-) for the previous (largery, of sub-matrices of the matriA. Then, using the results of

and hence it is hoped that it does not get trapped into a loda8l, [24], [25], [19], [20], [21], we analyze the behavior
maximum. Figur&ll shows the basics of SLO algolhm  of SLO for large Gaussian random dictionaries. To achieve

From Fig.[1, SLO consists of two loops: the ‘outer’ |Oorpounds similar to the existing ones for minimizgtion meth-
is the loop in whicho is decreased, and the ‘inner’ loop i2dS, We use a popular result in Random Matrix Thebry [26],
the one in whichE, (s) is iteratively maximized (subject to [27]; to derive Corollary 4 of Sectidn !l which can be viewed
As = x) for the fixed choice ofo. In [I7], we prove thaif @S SI._O counterpart of Theorem 3.1 6f[28]. Specifically, we
the inner loop does not get trapped in a local maximum, odffentify p(a) >0, for any 0 < o <1, such that for large
solution will converge to the solution dfl(#so — 0 in the Scales satisfyingn/m — « andm — oo, SLO can recover
outer loop. In other words, i is decreased so gradually thafnY Sparse solutios with |[s[lo < p(a)m from a (possibly

the GNC approach works and we have avoided local maxifigiSy) measurement. _
in the inner loop, then our method will produce the desired One of the bottlenecks of Compressed Sensing methods for
results. handling large scale systems is the decoding complexity (se

@HG] for the definition of encoding and decoding in comprésse

However, a complete convergence analysis of SLO, as w . : Lo
b g y sing context). In BP, decoding complexity is known to be

as the choice of SLO parameters to guarantee avoiding loéil’m [23], orm!5n? for the cases whereis much smaller

maxima in the inner loops remained to be shown. In particular . o

we want to know 1) the rate of decreasingogf2) how many anm [29], [20). The <_:od|ng compl_gxﬂy isnn. MP method

. . has the smallest possible complexities for both encodirty an
times we have to repeat the inner loop (the valud.pfand decoding, which isnn, [BI]. For certain classes of systems
3) how to choose: in Fig.[d. In this paper, we present a Comfhe complexity can be further reduced #ologm [32]. In

plete convergence analysis of SLO for both noiseless araynoj, . : . . :
cases, and we present parameter settings that guarantee §|§Opaper, we will see (in SectiglVIFC) that the coding and

. ecoding complexities of SLO are similar to that of MP.
convergence to the solution @f] (1). In contrast to expomé&nti™ . . .
. . L : Since [1) is NP-hard, one may wonder that proving conver-
family of functions used for approximating th€ norm in

. : . : ence of SLO (with a complexity growing in quadratic with
P?is],atirl%e analysis here uses a family of spline functions fés;rcale) means that NR P. This is not the case. Note that in

i , BP, too, the guarantee that BP will find the solution[df (1)sloe
Note that, in practice, the values of SLO parameters

: t mean that NP= P, because such a guarantee only exists
guarantee the convergence to the solution [df (1) are nAt

v ‘q00d’ val h | id h i the case of a very sparse solution. Our analysis possesses
necessarily ‘good’ values. These values provide a themteti, oy limitation, t0o.

support for the SLO algorithm, but they are often excesgivel The paper is organized as follows. In sectioh II, assuming

pessimistic and result in slower convergence of the algorit s yhe internal loop of Fig]1 exactly follows the steepest
compared to dypical behavior (see also Section VI 6fI[9]). 55cent trajectory (in other words, we ignore the effectuof

and L, or implicity assume thaiy — 0 and L — o),

2Two other points in FigJL are: 1) The initial guess for therspat solution W€ analyze the convergence of the resultant (i.e. asyngptoti
is the minimum¢2 norm solution ofAs = x, which correspondsg [17] to the
maximizer of F,(s) wherec — oo, and 2) The step-size of the steepest 3By scale we mean the number of rows, and the number of columns,
ascent is decreased proportionalotd [L7]. m, of the dictionary.



SLO. Indeed, in this section, Theoréh 2 proposes a geomettie same set of solutions and with orthonormal rows of its
o sequence which guarantees the local concavity of cafttionary.

functions and the convergence of the internal loop of SLO Moreover, for any matrixA with orthonormal rows, by
to the true maximizer off,, and hence the convergencexpanding the set of rows oA, one can find a matrix
of asymptotic SLO to the sparsest solution. This sequenBec R(™~™)*™ gych thatQ = [A”,D”]” is orthonormal.
depends on the ARIP constants of the dictionary, which a¥ée note then that:

not easy to calculate. Hence, in Sectlod Ill, we discuss the

behavior of asymptotic SLO in the case of large random AAT =1,

Gaussian dictionaries. Corolldry 4 of this section coroes|s DD’ =1,_, )
Donoho’s results for! minimization, Theorem 3.1 of [28]. ADT =0 '

In Section[TV, we consider the effect of no ideal that is, ATA+D'D =1,

where the internal loop does not follow exactly the SIeePERLe rows of the matrixD are an orthonormal basis for the

ascent trajectory, and makes discrete jumps in the Steeqﬁﬂ-space ofA. Moreover, for anys satisfying As — 0 we
ascent direction. We provide a choice forwhich guaranties have ' ’

stability of the internal loop and convergence to the mazemi IDs| = | Qs|| = [s] (©)
as L. — oo. Then, after a discussion on the noisy case in o o ’

Sectiorm, we derive a (f|n|te) value fdrin SeCtiorm which Where, throughout the papé‘r; H stands for tth norm of a
guaranties the convergence of SLO to the sparsest solutiggetor.

This completes our convergence analysis of SLO. Further inpefinition 1: Let 7; : R™ ~ R be the projection of =
Section[V] (Theoreni]7), we study the complexity of SLQg, ... s 17 onto theith axis,i.e. m;(s) = s;. Moreover, let
and prove that it is of orde(m?), that is, the same as for , S) = (si, s ) for I = {iy <ipg < - < iy} C
MP, which is the fastest known algorithm in the field. Finally ;... ;) . Also let ¢ = {1---m} — I.

we address multiple sparse solution recovery with SLO andgyample. Fors = (2,3,4,7)7 andI = {1,3}, we have
show that the order of complexity of SLO can be reduced 1o, () — 4, 7,(s) = (2,4)7, andr.(s) = (3,7)7.

1.376\ ; i . . .
O(m*°7°) in this case. Definition 2: For the matrixA we define:
II. CONVERGENCEANALYSIS IN NOISELESS CASE va (n0) £ max max 7”7TI(S)H2
: |T|<no As=0 ||7rc(s)]|?
A. Basic Definitions Is||? = ||7r<(s)])?
. . . = max max —— ————>—— (7)
In [L7], we first choose a continuous functiofs that [1]<no As=0 |7mre(s)]|
! . . 2
asymptotically approximates a Kronecker delta: — max max |Is]] 1,
. |[1]<no As=0 [|mre(s)||
lim f,(s) = L it s =0 (4) inali i
c—0°7 0 ;ifs#£0 " where|I| represents the cardinality ¢f We will usevy(ng) =

~va(np) notation whenever there is no ambiguity about the
and use it to approximates||o by m — F,(s) whereF,(s) £ matrix A.
Yot fo(si). Then, it is shown that under some mild condi- Remark 2. Let null(A) = {s € R™|As = 0} denote the
tions on f,(-), maximizing F,(s) on As = x for a smallo, null space ofA. Then for anys € null(A):
using a GNC approach, will recover the sparse solution. To
avoid being trapped into local maxima, one may wish to designAs = 0 = As; + Ajesre =0 = [|Assy|| = [|Aesye],
a continuous concave functiofi, that can asymptotically (8)
approximate a Kronecker delta, but, taking into account t¢hereA, andA . are sub-matrices oA containing columns
shape of any approximation to the Kronecker delta, this iRdexed byl and I¢, respectively,s; = 7;(s) ands;e =
not possible. However, we note that even for non-conca@e:(s). NOW let oyin(-) and omax(-) stand for the smallest
continuous functions, if the function is concave in themitsi and largest singular values of a mafrighen from [8) and
of the global maximum then by starting from any point |Assr|| > omin(A7)]sr]|

sufficiently close the global maximum, steepest ascent will 9)
converge to the global maximum. In this section we investiga [Arese]l < Omax(Ase)llsre |
conditions under whicl¥,, subject toAs = x is concave near we will have:
the global maximum, and how these can be used in designing 9

g . (A]c)
a sequence of that forces SLO to converge to the global Y(no) < max —pEe . (10)
maximum. Il<no Opmin (A1)

Remark 1. Without loss of generality, we assume that the , . . o .
fA th e AAT — 1 herel. stands While it is common in the literature to define singular valtede strictly
rows o a'je OI’. Onormal'- : — ins w n positive, in this paper, we use the definition of Horn and 3ohn[33, pp.
for then x n identity matrix. In effect, if the rows oA are not 414-415], in which, the number of singular values op & ¢ matrix M is

orthonormal, performing a Gram-Schmidt orthonormalizati fixed equal tomin(p, ¢), and hence, the singular valueslef are the square
roots ofthe min(p, ¢) largest eigenvalues &1 M (or MM#). Using this

on the rOWS OfA (and domg t.he correspondlng opergtlons O_H'efinition, a matrix can have zero singular values; wherera giagular value
x, t00) gives rise to an equivalent system of equations witharacterizes a non-full-rank matrix.



By a similar argument: Definition 4: By ||s||0,,,» we mean the number of elements

of s which have absolute values greater tlamn other words,

2 2
v(ng) + 1 < max Tmax(A) = — L35 - (11) |s/lo,o denotes thé® norm of a clipped version &f, in which,
[0 Oy (A)  miny<n, o5y, (Ar) :

the components with absolute values less than or equal to

where|| - |» denotes the spectral norm of a matrix, that is, it8ave been clipped to zero.

largest singular value.

Ot?emarl:hgt f v(n) < Og ;tT |<°”9 asAhsatlsﬁes (t;le )URP B. Local concavity of the cost functions

serve that for any subs n, we havec? I i .

oo. When A has the URP, the columns oifm;;(e linearly .In this subsection, we show th_ﬁt: .o deflne.d in[(Ib),

independent as long dg| < n, and hencer A7) > 0. with v = y(ng), no < n, and restricted to a certain subset of
Sx £ {s € R™|As = x}, is concave. Then, we show that this

Then [I0) implies that/(n) is finite. i J ;
Remark 4. ~(ng) is clearly an increasing function of;. subset includes all points for whichi > no/(1 + ).
Lemma 1:Lets denoteF' = F.

Remark 5. Our definition ofy(ng) in (@) relates to the Y0, Wherey = ~(ng) for
lower ARIC defined in[(R). Fron{(11) it is easy to see that for, < n, and haveA satisfy the URP. LetS, £ {s ¢
the ARIC 67" satisfying [2), R™|As = x} andC be the subset ofx consisting of those
solutions that have at mosat, elements with absolute values

mm(

Y(ng) +1 <

Considering the existing upper bounds on the ARIP con-

IALZ w2

— Hmin

stants[[20], it is straight forward to find upper bound-dmy).
We discuss the upper bound 61ng) in sectionTll.

Remark 6. For anyn x n nonsingular matrixQ, the null
spaces oA andQA are equali.e. {s|As = 0} = {s|QAs =
0}. Thereforeya (no) = vqa (no) for any value ofng.

Remark 7.

left side multiplication by a nonsingular matrix. Theredoit

does not change the value of

greater tharr, that is:

C £ {seSllsloo < no} (18)

Then the Hessian matrix of’|c, where F'|c denotes the
restriction of ' on C, is negative semi-definite.

Proof: Let the linear transformatiod” : R™ " — Sy
defined bys = T'(v) £ DTv + ATx for a constantx. T

_ 1€ Olng. is clearly a linear isomorphism. Hence, instead of showing
Gram Schmidt orthonormalization involvesthat the Hessian of |¢ is negative semi-definite, we just need

to show that the Hessian a¥ is negative semi-definite on
“1(C) CR™ ", whereG =FoT.

In [17], we had used a family of Gaussian functions to Assumes € C. Clearly
approximate the/® norm. In this paper we use quadratic

splines instead. The second order derivative of these esplin Hg(v) = DHy(s)D7,
is easy to manipulate and this simplifies our convergen%ereV:Tfl(s) and
analysis.
Definition 3: Let f, : R — R denote a quadratic spline Hp(s) = diag(f” (1), f2 5 (sm))
with knots at{+1, —1,1+~,—1 — ~}, that is:
t H= —pding((51/0)..... [ (5/))-
1—82/(1+7) i s <1
fr(s) 2 (|s| - 12/(v247) :if1<]s|<1 Let I be the set of indexes of those elementsaf C that
0 i |s | 14~ have absolute values greater thanFrom the definition of
(13) C, |I] < ng. To prove thatHg(v) is negative semi-definite,
We also define we have to show thah’ DT Hp(s)Du < 0 for all u € R™.
fr.0(8) & fr(s/0) (14) Definingw £ Du, we haveAw = ADu = 0 and, therefore,
w € null(A). Next we show thatw”Hp(s)w < 0 for all
and m w € null(A). We write:
)£ fr0(s) (15) .
i=1 Hp(s)w = QZf” (si/o)w
In the rest of this paper, we use the notatiBn= £, ;. We .
also usef, = F, , whenever there is no ambiguity about - = Mg JoVw® + — (s o )w;2
Remark 8. f, and f/ are both continuous, so that o? ;fw( /o) o? wa( /o)
i &1
—2/(14+7) f 8] < 1 (19)
£(s) = 25/(V2+7)—2/y ;if1<s<1+7 By settingw; andw . equal to the sub-vectors &f indexed
g 2s/(V2+7)+2/y ;if -1—y<s< -1 "' byl andI¢ from (@) we have
0 sif |s| =1+~ 2 2
(16) Iwil? )l s g
and [wiel? = e (g = 70D =700 =7 20)
—2/(y+1) :if |s] <1 and hence, usind (1L7):
() =19 2/(v*+7) ;ifF1<[s|<1+7 17) 2 .2 2 2
! 0 sif [s| > 14~ w Hp(s)w < — Iwr] Iw] <0,

14+~ o2 Y24+ o2



which completes the proof. m C. The narrow variation property

In this subsection, we introduce a notion of the narrow
variation property, which states that whenever the values
of F, at two points exceed a certain threshold, those two
points are close to each other in the sense of the Euclidean
distance between them being bounded @ym'/?+'/%g).
Before stating Lemm&]2, we repeat Theorem 1 from [17].
This theorem states that if for each valuesofve pick a point
s, 0n Sy such thatF,(s,) is greater than a certain value
m —n+ k, then the sequence of these points converges to the

Viel:|s|>0=1-f(si)>1/(1+7) (21) sparsest solution as — 0.

Corollary 1: Under the conditions of Lemnid F = F, ,,
is concave at everg € B, whereB £ {s € Sx|F(s) >
m —no/(1+~)}. Moreover, the regiotd = {s € Sx|F(s) >
m—no/(2+2v)} C B is convex.

Proof: To prove the first part we show th&tC C, where
C is defined by IB. Les € Bandl = {1 <i < m]||s;| > o}.
Then|s|o,, = |I|, and hence, to provee C we have to show
that | 7] < ng. We write:

no m Theorem 1:Consider a family of univariate function,,
sEB= 7 Ty >m—F(s)=> {1-f(si)} indexed byo, o € R, satisfying the set of conditions:
=1 (22) 1) limyo fo(s)=0  ;forall s #0
> {1 f(s)}- 2) £,(00=1 ;foralloeR*
iel 3) 0< fr(s) <1 ;forallc e RY, s eR

Substituting [21L) in[(22), we obtainy/(1++) > |7]/(1+7), 4) F(J)rr each positive values of and «, there existsry €
which completes the proof of the first part. R™ that satisfies:

To prove the second part, we consider, s, € A. By Is| >a = f,(s) <v ;forall o< oy. (25)
definition, at mosty> elements oé; ands, can be greater than A o
o. Hence, if we define(t) = (1 — t)s; + tsy, for 0 < ¢ < 1, Let F,(s) = _Zizl fo(si). Assume thatA satisfies the_ U_RP,
at mostn, elements o(t) can have absolute values greateto € Sx Satisfies||sollo = k < n/2 ands, € S satisfies
thano. We knows(t) = s, —s; € null(A), and the hessian of Fy(sg) Zm—mn+k. Then

F is negative semi-definite on ngA) according to LemmE] 1. lim s, = so. (26)
Hence, if we definéi(t) = F(s(t)), we obtain: o0
s e e e Remark 1. Note that the conditions oA in Lemmal are
h=$ Hps+ (VF)'§=s"Hps <0 the same as in Theorel 1, affid,, defined in [T4) satisfies
all the conditions 1 to 4 of Theorehh 1, for any arbitrary value

Hence,h is concave on thé0, 1] interval, and for anyd <

of .
t <1, we have 7

The main idea of the following Lemnid 2 (and its proof)
is very similar to that of Theoreinl 1. We prove thatAf, ,
values at two points; and s, in Sy are larger thanm —

. This implies thats(t) € A, henceA is convex. m "0/(2+2v), then the distance betwesn ands; is bounded

by 2/m(y + 1)o.

Corollary 2: Under the conditions of Lemmial 1 and the "| amma 2:Let F = F , Wherey = ~(ng). If for two
assumption that there exists a sparse solutiprsatisfying pointss; ands, of Sy Wg.'have:
k2 |Isollo < no/(2 + 2v), by starting from any satisfying

F(s(t)) =h(t)>t-h(1)+ (1 —=1)-h(0) >m—no/(2+27)

F(8) > m —no/(2+ 2v) and moving on the steepest ascent F(s;)) >m— 5 n°2 , i=1,2, (27)
trajectory restricted t&,, we reach the global maximusy of T2y
F|s,, satisfyingF(s,) > m — k. More precisely, the solution then:
of the differential equation Is1 — s2|| < 2v/m(y+1)o. (28)
{ &(t) = VF|s 23) Moreover, ifs; = sp, we have a slightly stricter bound

a(0) =5 Is1 — sol| < v/m(y + 1)o- (29)
satisfies Proof: The argument is similar to that of Lemma 1

lim «t) = s,. (24) of [17], but made a bit more rigorous. Having in mind the

t——+o0

proof of the first part of Corollarll1, observe thatl(27) inggli

Proof: From Corollary[1 we know thatl = {s|F(s) > thats; ands, have at most, /2 elements with absolute values
m — TL()/(2 + 27)} IS a convex region_ By Starting from anygreater tharo. Hence,51 — S9 has a'.: mOShO elements with
point in a convex region and moving on the steepest ascéRgolute values greater tham. Let I index those elements of
trajectory of a function which is concave on that region, wét — s2 With absolute values greater tham. Then|I| < ng
achieve the global maximizer in that region. Therefore, trnd ) ) )
steepest ascent trajectory leads to the maximigerc A. [mre(s1 = s2) || < [I°)(20)° < dmo™. (30)
Using the assumptions on sparse solution, we have A.

- o ’ From and[(30), we get

Hence the maximizer clearly satisfiegs..) > F(so) > m—k. 20) ) d
[ | |77 (s1 — s2)||* < 4mo?y (31)



and

[s1 — s2|* < 4mo?(1 +7), (32)

which yield [28). Ifsy = sg, we can conclude that — s, has
at mostng elements with absolute values greater tharand
hence

Hsl—so|\2§m02(1+7). (33)

D. Bounded variations of cost functions
Our cost functions have a nice property whi¢h does

not, i.e. they are continuous. In Lemnid 3 we show that th

derivative of f is bounded, and as a result, small changes
s result in small changes iA'(s).

Lemma 3:For f = f, , and F' = F, ,:
) 2
1f'(s)] < TEEL (34)
and )
P = oo < X0l —sall (@9

for any s € R andsp, s € R™.

Proof: [34) is a straight forward conclusion frorh {16).

To prove [(35), note that for anyc R™ we have

2/m

IVF @)l = S Tt

(36)

where VF' denotes the gradient af : R™ — R. Moreover,
using the mean value theorem, for asiyyands, there exists
as € R™ such that

F(s1) — F(s2) = VF(s) (s; — s2) (37)
Therefore:
|F(s1) — F(s2)| = [VF(s)" (s1 — s2)|
<IVF@le- I - 52l £ G220 sy = sal
(38)
| ]

E. The choice of parameters of the algorithm

At this point we have acquired the necessary tools for
designing a sequence af values needed to successfully
maximize F, ,. The question remained to be solved is how,

after finding the global maximum of’, , for some value
of o, we choose the next value of so that we are guar-
anteed to be in a (locally) concave area. More specifical
Lemmal2 ensures that by starting from any pairsatisfying
F, +(s) > m—no/(2+ 2v) and following the steepest ascen
trajectory of F, ,, we end at the global maximusy of F, ,
satisfying F, ,(s.) > m — k. The question we study next is

Lemma 4:For constantsB > A > 0, let's define

N 2m
s . 39
‘To2m+B-4 (39)
Then we have the following result:
If F, ,(s) >m— A, thenF, .,(s) > m — B, (40)
for anys € R™. Moreover
Fro(s) 2 m— 8 (41)
=T (e
Proof: For {41) note that:
i(8/0)>1—82/(1+ Yo = F, 4(s) > —ﬂ~
ity = v)o v,0\8) =M 1+ )02
Let's define:
Oé(t)éF,y,g/(l_’_t)( ) ,Ya-S—i-St Zf,ya- 51+51

for ¢ > 0. Having |f] ,(s)| < 2/(1 + v)o from (33), and

! o(8) =0for [s| > (1 +~)o from (L8), we will have
dt |_|ZdthUS+S |<Z|SZ||f'yJS+S ))l
i=1
= D sl olsi+sit)| < 2me
lsi|<o(147)
Hence, by choosingy = (B — A)/(2m), we have

la(to) ~ a(0)] < tol Ta(r)| < B~ 4

for somet > 0. Then, choosing: = 1/(1 + to) in (39), we
have

[Feo(s) = Fo(s)| = |a(to) —a(0)] < B — 4,

which leads to[{40). [ |
Using Lemmd#, the following theorem states a sufficient
condition for the convergence of an asymptotic version dj,SL
in which the steepest ascent follows exactly the steepeshas
trajectory (.e. the caseu — 0 and L — o).
Theorem 2:Assume A satisfies the URP and is as
defined in [(IB), and als& = |[|sollo0 < no/(2 + 27). Let
§ £ argming,_, ||s|| = Afx and:

(42)

8]
E(1+7)
2m
2m+no/ (24 2v) — k

If we choose the geometric sequenceaiccording tarj ., =

ly7;, and sets; = § in the first step, and in each subsequent
step,i.e. 7 > 2, start withs;_; and move on the steepest
@iscent trajectory of,, to reach the maximizes;, then at
each step:

(43)

c= <1

(44)

Fy,(sj) >m—k

how, knowingF, ,(s.) > m—Fk, can we choose the next valueand

of o’ subject toF, . (s.) > m—no/(2+27). In Lemmd% we
present a constant for whicho’ = co satisfies this condition.

lim s; = sg.
j—o0



Proof: By induction onj. First note that by substituting [1l. L ARGE RANDOM GAUSSIAN MATRICIES

o1 defined by [(4B) in[(41), we havé,, (s1) = F,,(8) = Our sparsity constraint for successful recovery of thesar
m—k. Moreover, by substituting defined by[(44) in Lemmid4 5o|ution is of the formk < no/(2 + 2v), wherey = ~(no)
we conclude depends on the matriA. It is not practical to precisely

calculatey(ng) for large scale systems since computational
(45) : . )

complexity grows exponentlaﬁy However, in the case of
random Gaussian matrices we can find reasonable almost
Qure (a.s.) upper-bounds or(no), which make it possible
to compare our results with the ones féf-minimization

ng [28], [23], [24], [25]. In this section we assume thAt has

94 27' (46) independent identically distributed (i.i.d) entries drafrom a

) o ) normal distribution with zero mean and varianicé.
Therefore, according to Lemnfa 2, tle which is achieved  \\e yse Theorem I1.13 of [27]. Le® be anl x n random

by starting as; -, and following the steepest ascent trajectonpatrix with i.i.d. entries drawn from &/ (0, 1/n) distribution.
of Fy,, satisfiesFy, (s;) > m — k. We are interested in singular values @, or equivalently,
To prove the second part of Theoréin 2, note that> 0 gjgenvalues ofGTG, and, in particular, the smallest and the

asj — oo (sincec < 1) andm —k > m —n + k (sinCé |argest one. In[[27],]26], authors prove that
k < ng/2 < n/2), hence the sequence ef satisfies the

conditions of Theorerill1. The same conclusion also follows ]P’{amax(G) >1+/Il/n+ r} <exp(—nr?/2)  (49)
from Lemmal2, since,(s;) > m —k > m —no/(2 + 2v)
results in

Fo(s)>m—k = Fo(s) >m— 21—027

for any s € R™. Now, to complete the induction, assum
Fy,_,(sj—1) > m — k. Then, from [[45)

Fyi(8j-1) = Feo;_,(8j-1) 2 m

and also

lIs; — soll < v/m(y+ 1)o; = 0- @) P{own(G) <1 Vijn—r} <exp(-nr/2)  (50)

m They prove the above inequalities for the cdsg n. It is

Remark 1. Theorem[2 proves the convergence of afot difficult to check that[(49) holds for the cate> n as

asymptotic version of SLO, in which the internal loop step4ell, since from definition oG, /n/I G* is ann x I normal
tou — 0 and L — oo in Fig.[. We will discuss later in (9) to conclude that

Section[1V the case of: > 0 (discrete steps in the steepest T 2
L : P S omax(v/1/1 14+ +/n/l < —1r*/2)-
ascent directions), and propose a value/favhich guarantees {U (Vr/IGT) > 14 vn/l+ T} exp(—1r/2)

the convergence, provided that the internal loop is repleaqqoting thatamax(\/n_/l GT) = \/n_/lamax(G) and setting
until the convergence is achieved (corresponding te» o). ./ _ T\/l/_n we get the desired result.
Finally, SectiorL Ml proposes a value férthat guarantees the In the following theorem, using arguments similar to ones

convergence and that completes the convergence analysi$ 9f ¢, bounding the symmetric and asymmetric RICS [23],

SLO. : . . .
[24], [25], [20], we prove that with high probability the wad
Remark 2. In [17] (Remark 5, section lll) we heuris- ~ is bouz]ed. P anp Y

tically justified thato; should be chosen proportional to the Theorem 3:1f A is a random Gaussian matrix with
maximum absolute value of elementssofi.e. max; [s;[. ThiS ;i 4 zero mean entries of variandgn and if & = n/m and
choice is now better justified by Theorémh 2, Hg.](43). 8 = no/m are fixed, then
Remark 3. In Experiment 2 of[[17] we had observed that
the value ofc depended on the sparsity)(of the solution, and (1+/1/a+e€)?
not as much on any other parameter of SLO (see Fig.[30f [17]).F (no) > (1—/BJa—r)? =
The optimal value of: grew with increasing: and tended to ) ) )
1 ask — n/2. Equation[[44) supports this observation, as the exp(—nr”/2 + nrg/2) + exp(—ne”/2), (51)

value ofc depends only on the value &f(and of course, the \yhich tends to zero ags, — oo provided thate > 0 and
system scale), and— 1 ask — ng/2(1 + 7). > ro where

Corollary 3: Asymptotic SLO (whery — 0 and L — oo) ro & \/28/alog(e/B) (52)
converges to the sparse solution if
and e = exp(1) denotes the Euler's constant (the base of
adfyeg + 1Az < a, (48) natural logarithm).
Proof: Let I be some subset dfl, - - -, m} with |I| = no.

wherek = [|s|o, & > 1 is an arbitrary constan*" is the Then,A; is ny x n and
lower ARIC, and||A |2 denotes the spectral norm &f.

Proof: If (@8) holds, by setting., = [2ak] and using P{O’max(A) >1+4+/m/n+ 6} <exp(—ne?/2)  (53)
(12), it is easy to see thatng)+1 < «. Hence, the condition

of TheoremR,i.e. ||s|lo < no/(2 + 2v(no)), holds and the SEven a deterministic upper bound enusing [12) is not practical. The
converaence is quaranteed upper bound depends on Euclidean normAofand the lower ARIC. Precise

g g : calculaion of ARIC requires enumerating all possihlg-column submatrices
B of A and computing their smallest singular values.



and (corresponding tg: — 0 and L — o0), in which the steps of
the internal loop of Fig[]l follow exactly along the steepest
X ./ _ 2
P{U‘“‘“(AI) <1 no/n T} < exp(=nr”/2)  (54) ascent trajectory . In this section, we study how to choose
the parameter:. For this part of the analysis, we assume the
internal loop is repeated until convergence (correspantbn
L — o).

for any subsef/| = no. There are a total of"" ) such subsets,
which means

]p{ min omin(Az) <1— 1/no/n_r} < (m)e—nﬁ/?. Lemma 5:Let F = F,/ ,, wherey’ > v = ~(ny) and
[1=n0 n 55 ° > 0 is arbitrary. Let also\,,i, and ., denote the smallest
. and largest eigenvalues efDo?H(s)D? respectively (note
Then, using[(T1) we have that the values of\.,;, and A\, depend ors). Then for all
Rm
(1+ /m/n+e)? S< 2
P ng) > < e < ———
{7( 0) (1 — \/m_ 7’)2 )\mdx =14 ~ (62)
m exp(—nr2/2) + exp(—ne2/2). (56) and for alls € A
"o 2(v' =)
Amin > —— 1. (63)
From 14+ +92)
m me\ "o Proof: For convenience, let's define
(n ) < (n_) < exp (no 1og(me/n0)) (57) ,
0 0 A VA _ =) (64)
we get max 1 + ,7? min (1 + ,7)(71 +7/2)7
oLy (14 /m/n + €)? so that we need to show that
o (1 — 1/ no/n — ’f‘)2 - )\max S )‘l/max7 Amin Z )‘;nin‘ (65)

exp (no log(me/no) _mﬂ/g) +exp(_n62/2). (58) We know that for any matrixM with maximum and
_ minimum eigenvalues\,.x(M) and A\pin (M), M — Al is
If we assumea = n/m and 3 = no/m are fixed, then by positive semi-definite if and only i < A, (M). Moreover

definingro as in [52), we obtair (31) as — oc. B M — Al is negative semi-definite if and only ¥ > \yax.
Corollary 4: Let's definey(a, 8) as follows: To prove [65), we show thdDd(c?Hp(s) + X, . I)D” is
o S o 2
1 a2 positive semi-definite for alk € R™, and D(c°Hpg(s) +
v(a, B) £ 0t v1/e) 5 ' . I)DT is negative semi-definite as long as € A.
(1 —VB/a— /28]« 1og(e/ﬂ)) Following steps of the proof of Lemnia 1, the former follows
from
if 1 — /B/a — \/2B8/alog(e/B) > 0, and otherwise 2
’7(a7ﬁ) — +o00. Let also WT (UQHF(S) + /\;naxI)W > (/\;nax - m)HWHQ > 0.
8 , (66)
ple) & (59) To show the second assertion, fromi ](20) we obtain

~ 0282a 2+ 27(a, B)

lwrll?/[|w$||? < ~. Then, from [(ID) we have
Then, p(«) > 0 for any o > 0. Moreover, we can guarantee

that for almost every large system with ratigm — o, the  w’ (o*Hp(s) + )‘:ninI)W <Ny — L)HWICHQ
asymptotic SLO can recover the sparse solutions satisfying 127
Isllo < p(a)m. + (Mpin + 5—)lwz[* <0
Proof: To showp(«) > 0, simply note that 7+ (67)
: B _ o+
/311)%1+ 212 f) 0" (60) Hence, D(0?Hp(s) + N I)D? and D(o2Hp(s) +

M. D) DT are negative and positive semi-definite respectively,

max

For the second part, it suffice to apply Theolgm 3 with= and [B%) holds.

[8*m], where* is the value ofg that maximizesy(«, 8) in -
G9). u Theorem 4:Let F' = F., ,, wherey > v = ~(ng).

Suppose also that:
IV. STABILITY OF THE INTERNAL LOOP AND ITS

EXPONENTIAL CONVERGENCE RATE F(Sz) >m—

From Fig.[1, the steepest ascent steps in SLO are of
form:

no
24 2y

(68)

tPﬁ’\en, by setting
Si+1 = 8; + po’DTDVF], (61) 1 =2/(Main + Mnax): (69)

where DD is the orthogonal projection on ngA) and . where), .. and )/ . are as defined if(64), it is guaranteed
is the step size parameter. Until now, we have considertzht
convergence of what we refer to as asymptotic version of SLO llsit1 — Soptl| < CR||si — soptl|, (70)



wheres,,; is the maximizer off’ on Sy, s;11 is as defined
in @1), and CR= (M. — M)/ Moy + Ay ) determines
the convergence rate. Moreover:

F(siy1) > F(sq). (71)

Proof: The proof consists of the following steps.
Step 1 From [68),s; € A ands,,: € A, where A is as
defined in Corollary11. From Corollafy 14 is convex and
is concave onA. Hence,s,,; satisfies:

Sopt = Sopt + o’ DIDVE|s < DVEF|, , = 0.
Subtracting[(7R) from[{81), we have
Sit1—Sopt = Si — Sopt + o’ DTD(VF|s, — VFl,,,) (73)
Multiplying by D and settingDD” = I, we get

si VF|sopt)7

(74)
From the mean value theorem, there exists @ [0, 1] such
thats’ £ ts,, + (1 — t)s; satisfies:

(72)

D(si+1 — Sopt) = D(8; — Sppt) + po’D(VF

D(si+1 — Sopt) = D(8; — Sopt) + o DHE(S") (i — Sopt)-
(75)

Since{s;,sop } € A, it means that’ € A. Also, since(s; —

sopt) € NUII(A), it is equal to its projection to nylA), that

Step 3 From the second order Taylor expansion bf
arounds; we have

F(Si+1) - F(Sl) = (Sl’Jrl - Si)TVF
1 (82)
+ §(Si+1 - Si)THF(SiJrl —s;)

whereVFE = VF|s, andHp = Hp(s”), for some points”
satisfyings” = ts; + (1 — t)s; 11 for some0 < ¢ < 1. Then,
by substitutings; 1 —s; from (&1) and factoring we get

F(siy1) — F(si) =
1202

VFTDT (UQDHFDT + (2/;L)I)DVF. (83)

From [69) and[{@65) we have

Amax < 2/#' (84)
Now (71) is a straightforward conclusion &f {83) ahdl(84).
[ |

Remark 1. The value ofy < 4/ < (ng/2k) — 1 should
be chosen carefully. I/ — ~, then A .. /AL., — oo and
CR — 1. If ¥/ — (ng/2k) — 1, thenc — 1 in (@4), and the
computational cost tends to infinity. In Sectiod VI, we disgu

how to choose)’ to have a reasonable convergence.

iS, s; —Sopt = DTD(s; —s,t). Therefore, the above equation Remark 2. Theorem§R andl4 prove convergence of SLO,

can be written as
D(Si41 — Sopt) = (I+ ;LO'QDHF(SI)DT)D(SZ- —Sopt). (76)

Since(s; —sopt) and(s; 11 — sope) are both in nuffA), from
(©) we can write

i1 = Soptl| < [T+ po?DHp(s")D |2 - [|si —sope|- (77)
Step 2 Let’s define the Rate of Convergence (CR) as

CR=|I+ puo’DHEg(s)D” ||,

= max{|l — pAmin|, |1 — ftAmax!}

= max{1l — gAmin, —1 + A Amin, —1 + ftAmax, 1
= max{1l — gAmin, —1 + pAmax },

- :u’Amax}

(78)

provided that the internal loop is repeated until convecgen
reached. The question remains to be answered is how to select
the value ofL to guarantee that the internal loop is repeated
until convergence is reached. This question is answered in

Section V).

V. THE NOISY CASE

Thus far we discussed the convergence and stability of
SLO in the noiseless case. Theorem 3[of| [17] states that the
maximizer of F,, is a good estimator of sparse solution even
in the noisy case. In this section we investigate the choice o
parameters that assure local concavity and, hence, canezg
of SLO when data contains noise.

The following theorem is a maodification of Theorem 3

where\ i, and .., are the smallest and largest eigenvalues and it provides conditions for convergence in noise.

of —Do?Hp(s")DT. The value ofy that optimizes CR is
1= 2/(Amax + Amin), Which results in

o /\max_)\min o k—1
/\max + )\min B /\max + )\min B K+ 17
where s = k(—0?DHp(s')D?) = Ajax/Amin denotes the
condition number of matriXD. With this definition, we have

(80)

Amin

CR=1-2

(79)

[[8i+1 = Soptll < CR{[si — Soptl-

Computing A\i,.x and A\, in each step is not practical for
large scale systems. Instead, we can find bounds on thegsvalu c

using [6%). Of course this bounds do not dependson

Theorem 5:Let S, = {s| ||[As — x|| < €}, wheree is
an arbitrary positive number, and assume that mairiand
functions f,, satisfy the conditions of Theorelmh 2. Lef € S,
be a sparse solution. Assume the condittor ng /(2 + 2v),
and choose any’ satisfyingk < k' < no/(2 + 27). We also
choose the first term; and the scale factar according to

8]l

o= VEA+7) (83)
2m
S Ity —F (86)

Choosingu according to[(6P) and consideririg {78), we havgng setr; = o1c7-1, 1 < j < .J, where.J is the index of the

;nax — )\;nin
||I + /LO’QDHF(S/)DTHQ S W = CR’

max min

Taking [81) together with (77), we obtai (70).

(81)

smallest term of ther sequence satisfying

2y/m|All2€

T - a

> 0541 =COg-



10

Then, following the steps of asymptotic SLO and terminating
at stepJ, one can achieve a solution within the distari¢e deviation. Experiment 2 of [17] (Section 1V, Fig. 4) confirche

of the sparsest solution, where the result of Theorem 3 of [17]. Herd,_(87) arld](88) also
dm confirm this result. As can be seen from](88), the estimation
C= (Wm + 1) [All2. (88) error depends linearly on the system noise.

Proof: Let n 2 Aso — x. Then,s, € S. means that VI. FINALIZING THE CONVERGENCE ANALYSIS

|n|| < e. Definingn 2 A”n, we have At this point we have acquired all the tools necessary for
T’ B _ _ensuring the convergence of the external loop, stabilitthef

x = Asp+n = Asg+AA n = As)+An = A(sp+1) = AS, steepest ascent (internal loop), and robustness agaiis no

where§ 2 s + fi. Let s, be the maximizer off, on for SLO. The only parameter we have not yet discussed is

As = x, as defined in Theorem 1 of [17]. Note that, is L (the number of iterations of the internal loop shown in

not necessarily the maximizer df, on the wholeS,. The Fig-[). In this section, we put all the previous results tbge

argument is similar to that of Theorem 3 i [17]. Frofm](35§nd provide values for all the parameters that are suffi¢@ent

in lemmal3 and{87), we have guarantee successful convergence of SLO. .
We present results for three cases. In the first case, we
I8 —sol| = |7 < ||All2e = assume that suitable valuesmaf andy = v(ng) are known,
2 /m such that||sg|/o < no/(24 27v). In this case, the values of the
|Fs,(8) — Fy,(s0)] < —=——8 —sol| <k — k- (89) parameters that guarantee the convergence are summarized i
ai(1+7) Fi , :
g.[2 and the convergence is proved in Theofém 6.
Hence In the second case, is assumed unknown and we consider
Fy(so) >m—k=F, (8) >m—Fk- (90) a large Gaussian matri&, and use the almost sure results of

Sectior 1] to determineg and. The values of the parameters
for this case that guarantee convergence are summarized in
Fig. 3. For a random matrixA with i.i.d and zero-mean

The vectorsy, does not necessarily satisfys = x, however,
we have chosea to be the projection of, onto the subspace

?LS_;, ); T:einze,/s@sit;sﬂ)eshi:sc; 2 AMZLzO\kl)er’oFii(r:])izii Gaussian entries, Theoréin 7 shows that using these paramete
0 A ' y op 9 the sparse solution cAs = x can be found with probability

F, from an arbitrary point ind we are guaranteed a solutiona roaching 1 as the size of the svstem arows. as lond as
s, for which F,(s,) > m — k’. Now, using Lemm4l4, it is 2PP 9 y grows, 9

. S < p(a)m. Moreover, it is shown that the complexit
easy to conclude that for, andc chosen according (9 (B5) l‘)fog(lio grpo(w; asn?, which is faster than the state of Izhe a);t

and [88), 3

. / m?*° associated with Basic Pursuit and is comparable with
Foi(8) 2m—k (91) Matching Pursuit.

and The third case deals with multiple source recovery where
, the sparsest solutions of multiple USLE’'s with the same

Fo(s)2m =k = Feo(s) 2m —no/(2+27).  (92) coefficient matrix are recovered at once. Multiple source
Following the steps of the proof of Theordth 2, but with thEecovery may be viewed in the context of SCA [4] for
sparsity factork replaced byk’, we can conclude that Blind Source Separation.  In Experiment 6 of [17] we
) observed that implementing SLO for multiple source recpver

Fyy(sy) >m—k" (93) in matrix multiplication form can make it faster than the SLO

Using Lemmd2,[{30) and(D3), we then have algorithm for single solution recovery. Theorém 8 shows tha

1Al this approach can speed up SLO to the ordemdf 7.
- 4m||Al|2€
HSJ - SH < 2\/ m(7 =+ 1)GJ < /T L~ T V(k/ . k) (94) A. Case of knOWﬁ/

and Putting the results of previous sections together, thevell
ing theorem shows that if the values of the parameters are

sy = soll < fls; = 5[[ + 15 = so chosen as summarized in FIg. 2, then SLO will converge to
< Am|| All2e +[|A]]2¢ = Ce- 95 the sparsest solution. The proposed valuelfman be seen in
T eV1+(K —k) the sted1I7 of the figure. Note also that the notation of [ig. 1

m has been changed slightly in Fig. 2 to match the convergence
Remark 1. If ¥ — k, the error bound tends to infinity proof given next.
in @8). If ¥ — no/(2 + 2v), the computational cost would Theorem 6 (The case of knowg and~): Let y = y(no)
tend to infinity asc — 1 in (88). Hencek’ should be chosen and, without loss of generality, assume matax has or-
suitably between the two values. A simple sub-optimal oloi¢ghonormal rows. Letc = Asg + n for some|n|| < ¢ and

is presented in the next section. Isollo < k < n9/2(1 + 7). Let A & 22000k Then the
Remark 2. In Theorem 3 of [[1F7], we proved thatalgorithm given in Fig[R can recovesy, within a distance

by suitably choosingr proportional to the noise level, wed > Ce, where

can bound the Euclidean distance between the maximizer of N 4

F, and the sparse solution by order of the noise standard - (W T 1)”AH2' (96)



o Initialization:

A« n0/2(41+’y)*k

K — k+mA

174 (— k +2mA

2(”71;2 «— k+3mA (i.e.v +

& <—5— [|All2¢e

o1 + [|[ATx|[/\/no/(2 +279")

oy« &8 /2y/m(v +1)

log(o)—log(o)

J— | Oglogl(lpr(zg/;g)) ’1 —|(+ 1)
og(oq)—log(o,

log (c) “f%

9 ‘_01‘3]71(1 <j<J)

bV 2

max

ng
2(k+3mA)

9)
10)

11)

12)

’ 2(+" =)
13) Nnin = A+NGZ+7)
14)

u A 2/( min + >\
15) k' < A max
16)

CR « ~—1
oA /4)—1/2log(+'+1)
& _
17) L+ | —Tos(CR) 141
e FOrj=1,...,J:
1) o + oj.
2)|f]>2 SJ1<—SJ 1,L- |fj—1 Sl1<—AT
3)Fori=1,...,L—1:
= 8ji+1 ¢ 850 +po’DTDVF, s,
° Output iSSout <~ SJ,L-

max

min

Fig. 2. The SLO algorithm for the case of know and~(ng) and A with
orthonormal rows , with parameters shown that guaranteeecgence to the

sparsest solutlons] ; is the solution estimate at the corresponding iteration:

11

where the second inequality holds when the valuelLois
defined as in the Stdp 117 of Flg. 2. Hence, from Lenfina 3

_2ym

|Fo, (Sopt) = Fo, (sj,L)] < o (1 +7 ) [8j,2 — Sopt|| = mA.
! (103)
Therefore, from[(I00) and (ID3) we have
F,, (i) > Fy, (sopt) — mA > F, (8) —mA >m —k".
(104)
Step 3 We show that ifF,,,_ (s;_1,0) > m — k", then
Foy(s51) =2 m—mno/(2+2Y): (105)
From the algorithm of Fig.12, we know that
2m
> = . 106
CSTYA2 T 2mtmA (106)

Then, choosingd = ¥’ = k+2mA andB = ng/(2+27') =
k+3mA in Lemma# and substituting; ; = s,_1,7,, we have
Foy_(sj-1.L) Zm—k" = Fy (sj1) 2 m—no/(2+27):
(107)
Step 4 Here, we prove by induction o that F;,, (s; ) >

Proof: The proof is constructed using the following steps‘?‘nd from Step 2

Step 1 Let's sets = sq + A™n, then we havé € S, and
also F,(8) > m — k' for any ¢ > o ;. Assume that we have

5/

> = . 97
T ey D) o
Then, from Lemm&l3 we have
2 -
Fo(so) - Fo®) < =L Jisg—3]-  (98)
1+
Since||so — 8[| < [[AT |2 - [n]| < [|A]|2¢ and
4
! A
= — > —_—
925~ Al > g lAle  (99)
from (@17), [@8) and[(39) we have
|Fy(so) — F,(8)| <mA = F,(8) > F,(sg) —mA =m—k.
(100)

Step 2 We show that for anyt < j < J, if Fy,(sj1) >
m— 2+2 7, thenFy (s; ) > m—k", where the notations; ;
and k" are defined in Figl]2. Les,, be the maximizer of

F5, on Sy. Hence,F,  (Sopt) > Fo,(sj1) > m — W and
from Lemma2,
85,1 = Soptll < 2¢/m(y + 1)o. (101)
From [70), we conclude
185, = Soptll < (CR) 8,1 — Sopt|
< LZ“ (2vm0'+1)0;)  (202)

_ VA (1+7)
— 2 )

— k. In the first step, we have, ; = ATx and
o1 = [ ATx]|/v/no/ (2 +27): (108)
Hence, from Lemmél4
Fy (s11) > m—ng/(2427"), (109)
Fo,(s1,) >m— k" (110)
Assume that
Foy i (sj-1,) >m—k" (111)

for somej. Then from the results of Step 3 and noting from
F|g|2 thatSj,l =S;-1,0, We obtain

Foy(8j1) = Fo,(8j-1,0) =2 m —no/(2+27)
and from Step 2,

(112)

ng (Sj,L) Z m — k”.
We can conclude then that
Fy, (Sout) = Fy,(ss) > m—k" >m—ng/(2+27). (114)

Step § From LemmdR,[(114)[TI00) and the choice cof
given in step 8 of Figl]2, we have

18 = Soutll < 2¢/m(y + Doy =

(113)

(115)
and
50 —Soutl| < [I8—Sout|| +[[so—8] < 6/+||A||25 =4- (116)

This completes the proof of convergence of SLO. |
Remark 1. In noiseless case: (= 0), SLO can recover
the sparsest solution within a distantefor somed > 0, in a
finite number of steps. But as— 0, o, i.e. the last value of
o, tends to zero according to step 8 of Hifj. 2, ahtends to
oo according to step 9. Hence, the complexity of the algorithm
tends to infinity.
Remark 2. Note that the algorithm does not require
the exact value of thé” norm. Only an upper bound is
necessary.
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« Initialization: and
1) B* + maximizer off/(2 + 2y(a, 5)) 0N 0 < f < o lim log(1+ A/2) > 0- (122)
2) 7+ (e, 57) meeo
3) no + [B7m] Hence to show thaf = O(1), we need to show that
4) k<« [rm]
5) § + C'’e, whereC” is defined in[(T1I7) lim /moi < oo (123)
6) o1 < (1+ a)(1+ /o + €). (This step replaces step 7 of m—00
7 Eig"m‘)t" lization steps. - - - 6 and8 - - - 17 of Fig.2 and
o initialization stepsl - -- 6 and8 - - - 17 of Fig.[2. .
mlgnOO Vmaoy >0 (124)

Fig. 3. SLO initialization parameters for the case of unknew Step 6 here  To show [12B) note that
replaces step 7 of Fifl] 2.

lim I Al A—— lim S S
m—co \/ng/(242v") m—=oe \/(k+3mA)/m
2 1
<— < —- (125)
B. Case of unknown OEERG

For a large GaussiaA, we can use the a.s. results of Seopith , given in Fig[3, [12B) becomes an obvious conclusion

tion[to find ng and~(no), and thus obtain the initialization of (TT8) and [I25). To shoW {IP4), note that from Fiy. 2, we
of SLO shown in Fig[B. The following theorem guaranteggptain

convergence of the algorithm in Figl 3.
Theorem 7 (the case of unknowp and): Let A be an  lim vmo, = (6'/2) lim /1/(1+ ')
n x m Gaussian matrix, angt/m — o > 0 asm — oo. , YT
Lets fix r < p(«) and letP,, denote the probability that the > (0/2)v3/4(1+7) >0, (126)
algorithm in Fig.[3 can recover any, from x = Asy +n where we have used the fact that

within Euclidean distance af = C’¢, as long ag|sol/o < rm, no/(147") = 3no/A(14+7)+k/4d = 1/(1+7") > 3/4(1+7).

Iso]] <1, and|n|| < ¢, where (127)
N 16 Next, we show thaf, = O(1). Note that from Fig[2
o= ( + 1>(1 +Va). (117) ~log(A/4)
(p(a) - r) v+l L<—="2 42 (128)
—log(CR)

Then, we havé,, — 1 asm — co. Moreover, the complexity From [IZ1) we know that-log(A/4) is bounded. Hence, to

of the algorithm isO(m?). complete the proof of. = O(1), we need to show that
Proof: We know from Theorerql3 tha {y(ng) > v} —

0 asm — oco. Moreover,P {||A|2 > a+1} = 1 asm — n“}gnoo log(CR) < 0 n*}gnoo CR <1. (129)
oo [27], [26]. Therefore notinge = Asy +n we have From the definition of\’ , , ..., and«’ in Fig.[2,
P{|ATx| < 1+ va)’ + (1 +Va)e} -1  (118) K="+ =) (130)

asm — oo, becausg|so|l < 1 and ||n|| < e. This means Observe that

no no
that the condition imposed by step 6 of Hig. 3 is stricter than v —y= -
. ; " 2(k A)  2(k+4mA
that imposed by step 7 of Fifgl 2. Thus, all the conditions of (k+ 3”:1 %A (k+dmA) (131)
Theoren{® also apply for the algorithm in Fid. 3. Hence, the =3T3 Z T ImA
Euclidean distance between the final solution and the sgtarse (k +3mA)(k + 4mA)
solution is less thai, i.e. an
im YT g mA A
||Sout_SOH2 < Ce (119) mgnoo 1—|—’y/ _mgnoo k—|—4mA _mgnoo k/m+4A (132)
where C' is as defined in[{36). Moreovel, {C < C'} — 1 > A = A > 0.
asm — oo, where(C’ is as defined in[{117). Hence, the Ah+r pla)
accuracy is better thafi’e with probability tending to 1, which Also note that from[(127), we have
completes the proof of the convergence result. v < 4/3(1+7) — 1. (133)
From Fig[2, it is clear that the computational complexity of
SLO is O(mnJL) and sincen/m — a > 0, we can assume 'hen: from [I3P) and{133) one can conclude
n = O(m). To obtain the final complexity result, we show that lim x' < oo (134)
J=0(1) and L = O(1) asm — oo. According to Fig[®, and e
log(o1/0) lim CR =1—2 lim <1 (135)
log(1+ A/2) 2 (120) m—00 m—oo K/ + 1 .
From the initialization ofA shown in Fig[2, Remark 1. In [17], we experimentally observed that the
X B B optimal value ofL is a small constant (Fig. 5, Experiment 2,
lim A > Br/e+2y) —r = plo) —r >0 (121) section IV). Here, we proved thdt is bounded asn — oc.

m—o0 4 4
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« Initialization: repeat initialization steps--- 17 of Fig.[2
e FOrj=1,...,J:
1) o < oj.
215 >28;1«8Sj_1,0.1fj=1 811+ ATX
3)Fori=1,...,L—1:
- Sj,l+1 < Sj,l + HU2DTDVFO'|S]'J
o Output isSout < Sy 1.

conditions were derived in terms of the lower asymmetric
RIC and Eucleadian norm of the system. We then adapted
the convergence results for the special case where thamsyste
is a large Gaussian matrix. Next, we showed that convergence
of SLO can be similarly guaranteed in the case of noise. The
noise results combined with our previous work and numerical
experiments presented in[_J17] indicate that SLO exhibits
good robustness properties in noise. Lastly, we provided th
complete parameter setting of SLO, that guaranteed regover
of the sparsest solutions in the case of general as well as
Gaussian system. We then extended the SLO algorithm to
. . the case of multiple measurement vectors and provided the
C. Multiple Sparse Solution Recovery Case necessary parameter settings for the convergence.

Thus far, we discussed the recovery of the sparsest solutiomiso presented were computational complexity results for
of USLE containing a single measurement vector. In SC8L0 in the cases of single and multiple measurement vec-
applications one deals with multiple measurement vectors.tors. We showed that in the limiting case — oo and

The resulting system of equations can be written in matrix/;m — o > 0, the complexity isO(m?) and is comparable

Fig. 4. MSLO (SLO for multiple sparse recovery, ; is our estimation of
the matrix of sparse solutions at the corresponding level.

form: to that of orthogonal MP techniques. Further, we showed

X=AS+N, (136) that recovering multiple sparse solutions simultaneoumsly
where X 2 [x(1),...,x(T)] € R™T, § =2 ?)S(In%'3l\7/l6?Lo reduces complexity per individual solution to
s(1),....s(T)] € R™*T and N 2 [n(1),...,n(T) € “o* )

The main purpose of the presented results is to fulfill
ihe need for theoretical justification of SLO. A number of

. . papers have stated that RIP provides a strict condition for
overall computational complexity reduces as compared 7O

T separate applications of the vector version of SLO Tha@alysis of sparse recovery algorithms and it typicallyl&em
following theorem supports this observation " unnecessarily pessimistic choices for the theoreticarmpater

Theorem 8:Under the conditions of Theoref 7, using thélalues. Our empirical findings if_[17] confirm this assessmen

) A ._In the case of SLO as well. We have observed fast convergence
algorithm shown in Fig[d4 to recover the sparsest solutions g o

e ; .. with excellent empirical recovery rates under weaker seffitc
satisfying [13b) reduces average computational complaiit conditions than those that can be obtained from an ARIP
each individual solutionx(t),1 < ¢t < T to O(m!37) as e !

analysis.
T/m — oc.
Proof: Note that the only computationally expensive part

of the algorithm is step 3 of the loop in Figl 4, where we
multiply the m x m matrix DTD by the m x 1 vector
VF,|s,,, and also the initialization of; ;, where we compute
ATx. This is because these two steps are of odémn?),
and all the other computations are at most of or@rm). 7
Analogous to approach of Experiment 6 in[[17], we use the
matrix form [I36). We replace the final loop with steps showrt®!
in Fig. [4, and performm x T' matrix multiplication using (4
[T /m] multiplications ofm x m matrices using Coppersmith-
Winograd algorithm [[34]. The overall complexity i§/m
timesO(m?37%), or equivalently]” timesO(m!-375), meaning
that per sample complexity i©(m!-376).

R™*T As observed in Experiment 6 df [17], when we appl
the MSLO (SLO for multiple sparse recovery) of Fig. 4, th
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