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Abstract—In this paper, a fast algorithm for overcomplete sparse
decomposition, called SL0, is proposed. The algorithm is essen-
tially a method for obtaining sparse solutions of underdetermined
systems of linear equations, and its applications include under-
determined sparse component analysis (SCA), atomic decompo-
sition on overcomplete dictionaries, compressed sensing, and de-
coding real field codes. Contrary to previous methods, which usu-
ally solve this problem by minimizing the � norm using linear pro-
gramming (LP) techniques, our algorithm tries to directly mini-
mize the � norm. It is experimentally shown that the proposed
algorithm is about two to three orders of magnitude faster than
the state-of-the-art interior-point LP solvers, while providing the
same (or better) accuracy.

Index Terms—Atomic decomposition, blind source separation
(BSS), compressed sensing, overcomplete signal representation,
sparse component analysis (SCA), sparse decomposition, sparse
source separation.

I. INTRODUCTION

F INDING sparse solutions of underdetermined systems
of linear equations (USLE) is of significant importance

in signal processing and statistics. It is used, for example, in
underdetermined sparse component analysis (SCA) and source
separation [1]–[4], atomic decomposition on overcomplete
dictionaries [5], [6], compressed sensing [7], [8], decoding
real field codes [9], image deconvolution [10], [11], image
denoising [12], electromagnetic imaging and direction of
arrival (DOA) finding [13]. Despite recent theoretical devel-
opments [14]–[17], the computational cost of the methods has
remained as the main restriction, especially for large systems
(large number of unknowns/equations). In this article, a new
approach is proposed which provides a considerable reduction
in complexity. To introduce the problem in more details, we
will use the context of SCA. The discussions, however, may be
easily followed in other contexts and applications.

SCA can be viewed as a method to achieve separation of
sparse sources. Suppose that source signals are recorded by
a set of sensors, each of which records a combination of all
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sources. In linear instantaneous (noiseless) model, it is assumed
that in which and are the and

vectors of source and recorded signals, respectively, and
is the (unknown) mixing matrix. The goal of blind

source separation (BSS) [18], [19] is then to find only by
observing . The general BSS problem is impossible for the
case . However, if the sources are sparse (i.e., not a to-
tally blind situation), then the problem can be solved in two
steps [1], [2]: first estimating the mixing matrix, and then es-
timating the sources assuming is known. For sparse sources,
the first step—which can become very tricky for large —may
be accomplished by means of clustering [1], [2], [20], [21]. The
second step requires that for each sample the sparse solu-
tion of the USLE be found [1], [2], [22], [23].
Note also that the sparsity of the sources is not necessarily in the
time domain: if is a linear “sparsifying” transformation,
then . Due to linearity of , both linearity of
the mixing and the statistical independence properties of sources
are preserved in the transformed domain. Hence, SCA may be
applied in the transformed domain.

In the atomic decomposition viewpoint [5], the vector
is composed of the samples of a “single”

signal , and the objective is to represent it as a linear com-
bination of , signal vectors . After [24], the vec-
tors , are called atoms and they collectively form a
dictionary over which the signal is to be decomposed. We may
write , where is the

dictionary (matrix) and is the
vector of coefficients. A dictionary with is called over-
complete. Although, (e.g., discrete Fourier transform) is
sufficient to obtain such a decomposition, using overcomplete
dictionaries has a lot of advantages in many diverse applications
(refer for example to [6] and the references in it). In all these ap-
plications, we would like to use as small as possible number of
atoms to represent the signal. Again, we have the problem of
finding sparse solutions of the USLE .

To obtain the sparsest solution of , we may search
for a solution with minimal norm, i.e., minimum number of
nonzero components. It is usually stated in the literature [4],
[6], [9] that searching the minimum norm is an intractable
problem as the dimension increases (because it requires a com-
binatorial search), and it is too sensitive to noise (because any
small amount of noise completely changes the norm of a
vector). Consequently, researchers consider other approaches.
One of the most successful approaches is basis pursuit (BP) [4],
[5], [15], [25] which finds the minimum norm (that is, the so-
lution of for which is minimized). Such a solu-
tion can be easily found by linear programming (LP) methods.
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The idea of basis pursuit is based on the observation that for
large systems of equations, the minimum norm solution is
also the minimum norm solution [5], [14], [15]. By using
fast LP algorithms, specifically interior-point LP solvers, large-
scale problems with thousands of sources and mixtures become
tractable. However, it is still very slow, and in the recent years
several authors have proposed improvements for BP, to speed
up the algorithm and to handle the noisy case [6], [10], [11],
[16]. Another family of algorithms is Iterative re-weighted least
squares (IRLS), with FOCUSS [13] as an important member.
These are faster than BP, but their estimation quality is worse,
especially if the number of nonzero elements of the sparsest so-
lution is not very small. Another approach is matching pursuit
(MP) [1], [24], [26] which is very fast, but is a greedy algorithm
and does not provide good estimation of the sources. The iter-
ative detection-estimation (IDE) approach presented in [27] is
also very fast, but adjusting its parameters is not easy.

Contrary to previous approaches, the method we present in
this paper is based on direct minimization of the norm. We
will see that our method performs typically two to three or-
ders of magnitude faster than BP (based on interior-point LP
solvers), while resulting in the same or better accuracy. We have
already briefly reported the basics of this approach in [28] and
its complex version in [29]. However, in this paper, we are going
to present a highly more complete description of this approach
and consider, mathematically and/or experimentally, its conver-
gence properties and the effects of its parameters.

The paper is organized as follows. Section II introduces the
basic principles of our approach. The final algorithm is then
stated in Section III. In Section IV, convergence properties of
the algorithm is discussed. Finally, Section V provides some
experimental results of our algorithm and its comparison with
BP.

II. BASIC PRINCIPLES OF OUR APPROACH

A. The Main Idea

The problems of using norm (that is, the need for a combi-
natorial search for its minimization, and its too high sensibility
to noise) are both due to the fact that the norm of a vector is
a discontinuous function of that vector. Our idea is then to ap-
proximate this discontinuous function by a suitable continuous
one, and minimize it by means of a minimization algorithm for
continuous functions (e.g., steepest descent method). The con-
tinuous function which approximates , the norm of ,
should have a parameter (say ) which determines the quality
of the approximation.

For example, consider the (one-variable) family of functions:

(1)

and note that

if
if

(2)

or approximately

if
if

(3)

Then, by defining

(4)

it is clear from (2) and (3) that for small
values of , and the approximation tends to equality when

. Consequently, we can find the minimum -norm solution
by maximizing (subject to ) for a very small
value of . Note that the value of determines how smooth
the function is: the larger value of , the smoother (but
worse approximation to -norm); and the smaller value of ,
the closer behavior of to -norm.

Note that for small values of , is highly nonsmooth, and
contains a lot of local maxima, and hence its maximization is not
easy. On the other hand, for larger values of , is smoother
and contains less local maxima, and its maximization is easier
(we will see in the next subsection that there is no local maxima
for large enough ’s). Consequently, our idea is to use a “de-
creasing” sequence for : for maximizing for each value
of (using e.g., gradient algorithms), the initial value of the
maximization algorithm is the maximizer of for the previous
(larger) value of . If we gradually decrease the value of , for
each value of the maximization algorithm starts with an initial
solution near to the actual maximizer of (this is because
and hence have only slightly changed and consequently the
maximizer of the new is probably close to the maximizer
of the previous ), and hence we hope to escape from getting
trapped into local maxima and reach to the actual maximum for
small values of , which gives the minimum -norm solution.1

Note that the basic idea holds not only for Gaussian family of
functions given in (1), but also for any family of functions
which approximates the Kronecker delta function, i.e., satisfies
(2) and (3). For example, it also holds for the family of “trian-
gular” functions

if
if

if
(5)

and for the family of “truncated hyperbolic” functions

if

if
(6)

and also for the family of functions

(7)

B. Initialization

Up to now, the behavior of the function was discussed for
small values of . It is also interesting to consider its behavior
for very large values of .

More specifically, it can be shown that “ for sufficiently large
values of , the maximizer of subject to is the
minimum -norm solution of , i.e., the solution given
by the pseudo-inverse of .” Here, we give only a justification

1This technique for optimizing a nonconvex function is usually called grad-
uated nonconvexity (GNC) [30].
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Fig. 1. Final SL0 algorithm.

to this property for the case of Gaussian family of functions
introduced in (1) by using Lagrange multipliers, and we leave
the formal proof to Section IV-B.

Using the method of Lagrange multipliers, for maximizing
subject to

, we set the derivative of the Lagrangian
with respect to and equal to zero,

which gives the following Karush–Kuhn–Tucker (KKT) system
of nonlinear equations of unknowns ( compo-
nents of , and components of ):

(8)

where .
On the other hand, the minimum norm solution of
may be found by minimizing subject to

. Using Lagrange multipliers, this minimization results in the
system of equations

(9)

Comparing systems (8) and (9), we see that for (or
where ), these two systems of equations
are identical, and hence the maximizer of is the minimum

-norm solution of .

III. THE FINAL ALGORITHM

The final algorithm, which we call SL0 (smoothed ), is ob-
tained by applying the main idea of the previous section on the
Gaussian family (1), and is given in Fig. 1.

Remark 1: The internal loop (steepest ascent for a fixed ) is
repeated a fixed and small number of times . In other words,
for increasing the speed, we do not wait for the (internal loop of
the) steepest ascent algorithm to converge. This may be justified
by the gradual decrease in the value of , and the fact that for
each value of , we do not need the exact maximizer of . We
just need to enter the region near the (global) maximizer of
for escaping from its local maximizers. See also Remarks 3–5
of Section IV-A.

Remark 2: Steepest ascent consists of iterations of the form
. Here, the step-size parameters should

be decreasing, i.e., for smaller values of , smaller values of
should be applied. This is because for smaller values of ,

the function is more “fluctuating,” and hence smaller step-
sizes should be used for its maximization. In fact, we may think
about changing the value of in (1) and (4) as looking at the
same curve (or surface) at different “scales,” where the scale is
proportional to . For having equal (i.e., proportional) steps of
the steepest ascent algorithm in these different scales, it is not
difficult to show2 that should be proportional to . Note
that in Fig. 1, instead of , only a constant is appeared. The
reason is that by letting for some constant , we
have , where

.
Remark 3: According to the algorithm, each iteration con-

sists of a gradient ascent step ,
, followed by a projection step. If for some values of

we have , then the algorithm does not change the value
of in that ascent step; however it might be changed in the pro-
jection step. If we are looking for a suitable large (to reduce the
required number of iterations), a suitable choice is to make the
algorithm to force all those values of satisfying to-
ward zero. For this aim, we should have ,
and because for , the choice
seems reasonable.

Remark 4: The algorithm may work by initializing (the
initial estimation of the sparse solution) to an arbitrary solution
of . However, the discussion of Section II-B shows that
the best initial value of is the minimum norm solution of

, which corresponds to . In another point of
view, one may think about the minimum norm solution as a
rough estimate of the sparse solution, which will be modified in
the future iterations of the algorithm. In fact, calculating min-
imum norm is one of the earliest approaches used for esti-
mating the sparsest solution and is called the method of frames
(MOF) [5].

Remark 5: Having initiated the algorithm with the min-
imum norm solution (which corresponds to ),
the next value for (i.e., ) may be chosen about two to
four times of the maximum absolute value of the obtained
sources . To see the reason, if we take for example

, then for all
, and comparison with (3) shows that this value of

acts virtually like infinity for all the values of ,
(the next remark, too, provides another reason through another
viewpoint to the algorithm).

2To see this, suppose that � � �� in� corresponds to � � �� in � .
Then � �� �� ��� �� �� � � � �� results in � �� � � �� .
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For the next values of , we have used ,
, where is usually chosen between 0.5 and 1. Its effect is

experimentally studied in Section V.
Remark 6: Equation (4) seems to simply count the “in-

active” elements of . However, instead of hard-thresholding
“inactive ; active ,” criterion (4) uses a
soft-thresholding, for which is the rough threshold.

Remark 7: In applications where the inactive elements of
the sparsest are exactly zero, can be decreased to arbitrarily
small values. In fact, in this case, its minimum value is deter-
mined by the desired accuracy, as will be discussed in Theorem
1. For applications in which inactive elements of are small
but not exactly zero (say that the “source” vector is noisy), the
smallest should be about one to two times of (a rough esti-
mation of) the standard deviation of this noise. This is because,
while is in this range, (3) shows that the cost function treats
small (noisy) samples as zeros (i.e., for which ).
However, below this range, the algorithm tries to ‘learn’ these
noisy values, and moves away from the true answer (according
to the previous remark, the soft threshold should be such that
all these noisy samples be considered inactive). Restricting
to be above the standard deviation of the noise, provides the ro-
bustness of this approach to noisy sources (or mixtures), which
was one of the difficulties in using the exact norm.

IV. THEORETICAL ANALYSIS OF THE ALGORITHM

A. Convergence Analysis

In this section, we try to answer two questions for the noise-
less case (the noisy case will be considered in Section IV-C):
a) Does the basic idea of Section II results in convergence to the
actual minimizer of the norm (assumed to be unique by [13],
[15])? and b) If yes, how much should we decrease to achieve
a desired accuracy?

Note that the algorithm of Fig. 1 has two loops: the external
loop which corresponds to the basic ideas of Section II for
finding the sparsest solution, and the internal loop which is a
simple steepest ascent algorithm for maximizing for a
fixed . In the analysis of this section, it is assumed that the
maximization of has been exactly done for a fixed (the
maximization algorithm has not got trapped into local maxima).
Note that we had proposed the gradual decrease in to escape
from getting trapped into local maxima when maximizing

for a fixed . A theoretical study to find the series ,
, which guaranties the convergence is very tricky (if

possible) and is not considered in this paper. However, it will
be experimentally addressed in the next section.

Assuming the maximization of for fixed ’s is perfectly
done, we show here that the estimation given by the algorithm
converges to the unique minimizer of the norm. In other
words, we prove that the sequence of ‘global’ maximizers of

’s will converge to the sparsest solution (which is the basic
idea of Section II), and try to answer both above questions.

Before stating the convergence theorem (Theorem 1), we
state three lemmas. Recall that null .

Lemma 1: Assume that the matrix
(where represents the th column) has the property

that all of its sub-matrices are invertible, which is called

the unique representation property (URP) in [13].3 If el-
ements of null converge to zero, then all of its elements
(and hence ) will converge to zero, as well.

Proof: Without loss of generality, assume that all the
columns of are normalized, i.e., ,
(throughout the paper, stands for the or Euclidean or
Frobenius norm of a vector or matrix). Then, we have to show

such that null

elements of have absolute values

less than (10)

Let be in null and assume that the
absolute values of at least elements of it are smaller
than . Let be the set of all indices , for which .
Consequently, , where represents the cardinality
(i.e., number of elements) of a set . Then we write

(11)

Let be the submatrix of containing only those columns
of that are indexed by the elements of . Thus, has at
most columns, and the columns of are linearly independent,
because of the URP of . Therefore, there exists4 a left inverse

for . Let and denote those sub-vectors of which are,
and which are not indexed by , respectively. Then

(12)

(13)

Now, let be the set of all submatrices of , consisting of
at most columns of . Then is clearly a finite set (in fact

). Let5

(14)

3URP of� also guaranties that the sparsest solution is unique [13], [15].
4Note that �� is not necessarily a square matrix and hence is not necessarily

invertible. But it has a left inverse, which is not necessarily unique. In this case
�� is just “one” of these inverses. For example, since �� is tall and full-rank,
its Moore–Penrose pseudoinverse is one of these inverses.

5Note that the calculation of � is difficult in the cases where � and � are
large. Calculation of the exact value of � requires a computation complexity
larger than which can be impractical for large values of� and �.
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then

(15)

is a constant and its value depends only on the matrix .
Therefore, for each it suffices to choose .

The above proof [calculations (11)–(15)] results also in the
following corollary.

Corollary 1: If satisfies the URP, and
null has at most elements with absolute values

greater than , then , where is as defined
in (14).

Lemma 2: Let a function have the properties
and , , and let be defined as in

(4). Assume satisfies the URP, and let .
Assume that there exists a (sparse) solution for which

(such a sparse solution is unique [13], [15]).
Then, if for a solution

(16)

and if is chosen such that the ’s with absolute values
greater than satisfy , then

(17)

where is as defined in (14).
Proof: Let be the set of all indexes for which ,

and denote its number of elements by . Then

Combining this result with (16), we obtain

Consequently, at most elements of have absolute values
greater than . Since has exactly nonzero elements, we
conclude that has at most elements with
absolute values greater than . Moreover, null
(because ), and hence Corollary 1
implies (17).

Corollary 2: For the Gaussian family (1), if (16) holds for a
solution , then

(18)

Proof: For Gaussian family (1), the of the above lemma
can be chosen as , because for

Moreover, this family satisfies the other conditions of the
lemma.

Lemma 3: Let , , and be as in Lemma 2, and let
be the maximizer of on . Then satisfies (16).

Proof: We write

because is the maximizer

see below

because (19)

The second inequality was written because has zeros,
and hence in the summation (4) there are ones, and the
other terms are nonnegative.

Note that Lemma 3 and Corollary 2 prove together that for
the Gaussian family (1), as .
This result can, however, be stated for a larger class of functions

, as done in the following theorem.
Theorem 1: Consider a family of univariate functions , in-

dexed by , , satisfying the following set of conditions:
1) ; for all ;
2) ; for all ;
3) ; for all , ;
4) for each positive values of and , there exists

that satisfies

for all (20)

Assume satisfies the URP, and let , and be as defined
in Lemma 2, and be the maximizer of

on . Then:

(21)

Proof: To prove (21), we have to show that

(22)

For each , let , where is as defined in (14).
Then for this and , condition 4 of the theorem gives
a for which (20) holds. We show that this is the we were
seeking for in (22). Note that , (20) states that for ’s
with absolute values greater than we have .
Moreover, Lemma 3 states that satisfies (16). Consequently,
all the conditions of Lemma 2 have been satisfied, and hence it
implies that .

Remark 1: The Gaussian family (1) satisfies conditions 1
through 4 of Theorem 1. In fact, conditions 1, 2, and 3 are
obvious. To see condition 4, it is sufficient to choose

if , or to choose any arbitrary
if . Families of functions defined by (5), (6), and (7) also
satisfy the conditions of this theorem.

Remark 2: Using Corollary 2, where using Gaussian family
(1), to ensure an arbitrary accuracy in estimation of the sparse
solution , it suffices to choose

and do the optimization of subject to .
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Remark 3: Consider the set of solutions in , which
might not be the absolute maxima of functions on , but
satisfy the condition

(23)

By following a similar approach to the proof of Theorem 1, it
can be proved that . In other words, for the
steepest ascent of the internal loop, it is not necessary to reach
the absolute maximum. It is just required to achieve a solution
in which is large enough (see also Remark 1 of Section III).

Remark 4: The previous remark proposes another version of
SL0 in which there is no need to set a parameter : Repeat the
internal loop of Fig. 1 until exceeds [the worst
case of the limit given by (23)] or if is known a
priori [note that (19) implies the maximizer of for a fixed

surely exceeds both of these limits]. The advantage of such a
version is that if it converges, then it is guaranteed that the esti-
mation error is bounded as in (18), in which is replaced with

, the last element of the sequence of (according to Fig. 1). It
has, however, two disadvantages: first, it slows down the algo-
rithm because exceeding the limit for each is not
necessary (it is just sufficient); and second, because of the possi-
bility that the algorithm runs into an infinite loop because
cannot exceed this limit (this occurs if the chosen sequence of

has not been resulted in escaping from local maxima).
Remark 5: As another consequence, Lemma 1 provides an

upper bound on the estimation error , only by having
an estimation (which satisfies ): Begin by sorting
the elements of in descending order and let be the absolute
value of the th element. Since has at most
nonzero elements, has at most elements with absolute
values greater than . Moreover, null and hence
Corollary 1 implies that , where
is as defined in (14). This result is consistent with the heuristic
“if has at most ‘large’ components, the uniqueness of the
sparsest solution insures that is close to the true solution.”

B. Relation to Minimum Norm 2 Solution

In Section II-B, it was stated and informally justified [for the
Gaussian family (1)] that for very large ’s, the maximizer of
the function subject to is the minimum -norm
solution of . This result can be more accurately proved,
and also generalized to a wider class of functions.

Theorem 2: Consider a family of one variable functions
, parameterized by , satisfying the following set

of conditions:
1) all functions are scaled versions of some analytical

function , that is, ;
2) , ;
3) ;
4) ;
5) .
Assume that the matrix is full-rank and let

be the minimum -norm
solution of the USLE . Then

Proof: Let .
Then, we have to show that .

First we show that

(24)

Since is the maximizer of , we have

(25)

and hence

(26)

On the other hand, assumption 2 implies that for all ,
. Combining this with (26), we have

for (27)

This result, combined with assumption 3 (that is,
) and the continuity of implies that for all ,

; from which (24) is deducted.
Now, let . Then we can write

where

(28)

Then

Consequently, (25) can be written as
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where for the last inequality, we have used the inequality

Finally

(29)

Noting that is the minimum -norm solution of ,
, and hence . Combining

this with (29), we have

(30)

On the other hand, since is the minimum -norm solution of
, it is perpendicular to any vector contained in null .

This is because null , , and hence
. Consequently,

is perpendicular to . Therefore

Combining this with (30) we have , and
hence .

Remark 1: The Gaussian family (1) satisfies the conditions
1–5 of Theorem 2. Therefore, for this family of functions, the
minimum -norm solution is the optimal initialization. Family
of functions defined by (7) also satisfies the conditions of this
theorem, contrary to those defined in (5) and (6) which are not
analytic.

C. The Noisy Case

As shown in the proof of Theorem 1, in the noiseless case, a
smaller value of results in a more accurate solution and it is
possible to achieve solutions as accurate as desired by choosing
small enough values of . However, this is not the case in the
presence of additive noise,6 that is, if . In fact,

6The “noise” in this context has two meanings: 1) the noise in the source
vector � means that the inactive elements of � are not exactly equal to zero; and
2) the (additive) noise in the sensors means that � is not exactly equal to��. In
the theorems of this section, only the second type of noise has been considered,
and it is assumed that the first type does not exist. In other words, the inactive
elements of � are assumed to be exactly zero.

noise power bounds maximum achievable accuracy. We state a
theorem in this section, which can be considered as an extension
of Theorem 1 to the noisy case.

First, we state the following lemma, which can be considered
as a generalization to Lemma 1.

Lemma 4: Let satisfy the conditions of Lemma 1, and as-
sume that the vector has elements with absolute values
less than , and . Then , where

and is as defined in (14).
Note that in this lemma, instead of condition , we

have a relaxed condition . Lemma 1 is the special
(noiseless) case of this lemma where .

Proof: Let , , , and be defined as in the proof of
Lemma 1. Then

Therefore, by repeating the calculations of (12) and (13), we
obtain .

Theorem 3: Let , where is an
arbitrary positive number, and assume that the matrix and
functions satisfy the conditions of Theorem 1. Let
be a sparse solution, and assume that satisfies the following
extra conditions:

1) there exists such that

for all and all

2) for each positive values of and , there exists an
that satisfies:

for all

Let and be defined as in Theorem 1. Then under the con-
dition , by choosing

(31)

and optimizing , the sparse solution can be estimated with
an error smaller than

where is the value for which the condition 2 holds for and
.
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Proof: Let . Then, means that
. By defining , we have

where . Let be the maximizer7 of on
, as defined in Theorem 1. When working with -norm, no

matter how much small is and how much sparse is , is not
necessarily sparse. However, as will be discussed, because
is continuous and is small, the value of at is close to
its value at (and thus, is large). In fact

By defining , we have and
. Using the mean value theorem,

there exists a such that

We write

Let us choose according to (31). Then

The vector does not necessarily satisfy , however we
have chosen to be the projection of onto the subspace

. Hence, satisfies and since is the maximizer of
on , . Consequently,

by choosing as the value for which the condition 2 holds for
and , and following the same steps as in the proof

of Theorem 1, we conclude that at most elements of
can have absolute values greater than . Then, since has at
most nonzero elements, has at most elements
with absolute values greater than . Noticing

, we see that satisfies the conditions
of Lemma 4, and hence

(32)

Remark 1: A few calculations show that the Gaussian family
(1) satisfies the condition 1 of the theorem for
and the condition 2 for . Family of functions
defined by (7) also satisfy the conditions of this theorem.

7Note that, � is not necessarily maximizer of � on the whole � .

Remark 2: Note that for Gaussian family of functions and
under the condition , accuracy of the solution is propor-
tional to the noise power.8 In fact, we have accuracy of at least

, where

If , by choosing according to (31), converges to .
Remark 3: According to Theorem 3, in contrast to the noise-

less case, it is not possible here to achieve arbitrarily accurate
solutions. Accuracy is bounded by the noise power, and to guar-
anty an error estimation less than using Theorem 3, it is re-
quired to satisfy .

V. EXPERIMENTAL RESULTS

In this section, the performance of the presented approach is
experimentally verified and is compared with BP (and with FO-
CUSS for the first experiment). The effects of the parameters,
sparsity, noise, and dimension on the performance are also ex-
perimentally discussed.

In all of the experiments (except in Experiment 3), sparse
sources are artificially created using a Bernoulli–Gaussian
model: each source is “active” with probability , and is “in-
active” with probability . If it is active, each sample is
a zero-mean Gaussian random variable with variance ; if
it is not active, each sample is a zero-mean Gaussian random
variable with variance , where . Consequently,
each is distributed as

(33)

where denotes the probability of activity of the sources, and
sparsity implies that . models the noise in the sources,
that is, small values of the sparse sources in their inactive case.
This parameter is mostly meaningful in SCA applications, in
which, usually the sources in their inactive states are not exactly
zero. However, in sparse decomposition applications can be
usually set to zero, that is, most elements of the dictionary are
absent in the decomposition.

In our simulations, is always fixed to 1. The effect of
is investigated only in the first experiment. In all the other

experiments it is set to zero.
Each column of the mixing matrix is randomly generated

using the normal distribution and then is normalized to unity.
Then, the mixtures are generated using the noisy model

(34)

where is an additive white Gaussian noise (modeling sensor
noise, or decomposition inaccuracy) with covariance matrix

(where stands for the identity matrix).
To evaluate the estimation quality, signal-to-noise ratio

(SNR) and mean-square error (MSE) are used. SNR (in dB) is
defined as and MSE as ,
where and denote the actual source and its estimation,
respectively.

8Optimal choice of � is also proportional to the noise power.
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TABLE I
PROGRESS OF SL0 FOR A PROBLEM WITH � � ����, � � ��� AND

� � ��� �� � ����

Using (33), the number of active sources has a binomial dis-
tribution with average . In the experiments, we will use the
parameter , instead of .

Experiment 1. Performance Analysis

In this experiment, we study the computational cost of the
presented method, and compare its performance with -magic
[25] as one of the fastest implementations of interior-point
LP, and with FOCUSS.9 In rest of the paper, by LP we mean

-magic implementation of the interior point LP.
The values used for the first part of the experiment are

, , , , , and
the sequence of is fixed to .
is fixed to 2.5. For each value of the gradient-projection loop
(the internal loop) is repeated three times, i.e., (influence
of L is discussed in part of experiment 2; in all other experiments

and are fixed to 2.5 and 3).
We use the CPU time as a measure of complexity. Although

it is not an exact measure, it gives a rough estimation of the
complexity, for comparing SL0 and LP algorithms. Our simula-
tions are performed in MATLAB7 environment using an AMD
Athlon sempron , 1.67-GHz processor with 512 MB of
memory, and under Microsoft Windows XP operating system.

Table I shows the gradual improvement in the output SNR
after each iteration, for a typical run of SL0. Moreover, for this
run, the total time and final SNR have been shown for SL0, for
LP, and for FOCUSS. It is seen that SL0 performs two orders
of magnitude faster than LP, while it produces a better SNR (in
some applications, it can be even three orders of magnitudes
faster: see Experiment 6). Fig. 2 shows the actual source and its
estimations at different iterations for this run of SL0.

The experiment was then repeated 100 times (with the same
parameters, but for different randomly generated sources and
mixing matrices) and the values of SNR (in dB) obtained over

9For FOCUSS, we have used the MATLAB code available at http://dsp.ucsd.
edu/~jfmurray/software.htm

Fig. 2. Evolution of SL0 toward the solution: � � ����, � � ��� and � �
����� � ����. From top to bottom, the first plot corresponds to the actual
source, the second plot is its estimation at the first level �� � ��, the third
plot is its estimation at the second level �� � ����, while the last plot is its
estimation at third level �� � ����.

these simulations were averaged. These averaged SNRs for SL0,
LP, and FOCUSS were respectively 30.85 dB, 26.70 dB, and
20.44 dB; with respective standard deviations 2.36 dB, 1.74 dB
and 5.69 dB. The minimum values of SNR for these methods
were respectively 16.30 dB, 18.37 dB, and 10.82 dB. Among
the 100 runs of the algorithm, the number of experiments for
which SNR 20 dB was 99 for SL0 and LP, but only 49 for
FOCUSS.

In the second part of the experiment, we use the same param-
eters as in the first part, except to model the noise of
the sources in addition to AWG noise modeled by . The aver-
aged SNRs for SL0, LP, and FOCUSS were respectively 25.93,
22.15, and 18.24 dB; with respective standard deviations 1.19,
1.23, and 3.94 dB.

Experiment 2. Dependence on the Parameters

In this experiment, we study the dependence of the perfor-
mance of SL0 to its parameters. The sequence of is always
chosen as a decreasing geometrical sequence ,

, which is determined by the first and last elements, and
, and the scale factor . Therefore, when considering the ef-

fect of the sequence of , it suffices to discuss the effect of these
three parameters on the performance. Reasonable choice of ,
and also approximate choice of have already been discussed in
Remarks 2–5 of Section III. Consequently, we are mainly con-
sidering the effects of other parameters.

The general model of the sources and the mixing system,
given by (33) and (34), has four essential parameters: , ,

, and . We can control the degree of source sparsity and the
power of the noise by changing10 and . We examine
the performance of SL0 and its dependence to these parameters
for different levels of noise and sparsity. In this and in the fol-
lowings, except Experiment 6, all the simulations are repeated
100 times with different randomly generated sources and mixing
matrices and the values of the SNRs (in dB) obtained over these
simulations are averaged.

Fig. 3 represents the averaged SNR (as the measure of perfor-
mance) versus the scale factor , for different values of

10Note that the sources are generated using the model (33). Therefore, for
example � � ��� does not necessarily mean that exactly 100 sources are active.
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Fig. 3. Performance of SL0 as function of � for the case � � ���� and � �

��� (SNRs are averaged over 100 runs of the algorithm). � is fixed to 1 (large
enough) and � is fixed to 0.01 (small enough). In (a) � is fixed to 100 and
effect of noise is investigated. In (b) � is fixed to 0.01 and effect of sparsity
factor is analyzed.

Fig. 4. Performance of SL0 versus � for � � ���� and � � ��� (SNRs are
averaged over 100 runs of the algorithm). � is fixed to 1 (large enough) and �
is fixed to 0.8 (near enough to one). In (a) � is fixed to 100 and effect of noise is
investigated. In (b) � is fixed to 0.01 and effect of sparsity factor is analyzed.

and . It is clear from Fig. 3(a) that SNR increases when in-
creases from zero to one. However, when exceeds a critical
value (0.5 in this case), SNR remains constant and does not in-
crease anymore.

Generally, the optimal choice of depends on the applica-
tion. When SNR is the essential criterion, should be chosen
large, resulting in a more slowly decreasing sequence of , and
hence in a higher computational cost. Therefore, the choice of

is a trade-off between SNR and computational cost. However,
as seen in the figures, when approaches to unity, SNR does
not increase infinitely. In Fig. 3(a), the optimal value of , i.e.,
the smallest value of that achieves the maximum SNR, is ap-
proximately . However, it is clear from Fig. 3(b) that the
optimal choice of depends on the sparsity, but not on the noise
power. Exact calculation of the optimal might be very hard.
To guarantee an acceptable performance, it suffices to choose
greater than its optimal value.

From [15], we know that is a theoretical limit for
sparse decomposition. However, most of the current methods
cannot approach this limit (see Experiment 3). In Fig. 3(b),

is plotted, and it is clear that by choosing
larger than 0.9 an acceptable performance can be achieved

(however, with a much higher computational cost).
In Fig. 4, SNR is plotted versus (where is the last

and smallest ) for different values of and . In Fig. 4(a),
for the noiseless case, SNR increases linearly, by increasing in

. Although not directly clear from the figure, calcula-
tion of the obtained values of the figure better shows this linear
relationship. This confirms the results of Theorem 1 (accuracy
is proportional to the final value of ). In the noisy case, SNR

Fig. 5. Averaged SNR (on 100 runs of the algorithm) versus � for the case
� � ���� and � � ���, � � ��� and � � ����.

increases first, and then remains constant. As was predicted by
Theorem 3, in the noisy case the accuracy is bounded and might
not be increased arbitrarily.

Generally, the optimal choice of depends on the applica-
tion. In applications in which SNR is highly more important than
the computational load, should be chosen small, resulting in
a larger sequence of , and hence a higher computational cost.
However, excessively small choice of (smaller than the op-
timal choice) does not improve SNR (in fact SNR is slightly
decreased. Recall also the Remark 6 of Section III). It is clear
from Fig. 4 that the optimal choice of depends on the noise
power, but not on the sparsity. Exact calculation of the optimal

might be very hard. To guarantee an acceptable performance,
it suffices to choose less than its optimal value.

From this experiment it can be concluded that, although
finding optimal values of the parameters for optimizing the
SNR with the least possible computational cost may be very
hard, the algorithm is not very sensitive to the parameters, and
it is not difficult to choose a sequence of (i.e., and ).

Finally, to study the effect of (number of iterations of the
internal steepest ascent loop), the parameters are fixed to the
values used at the beginning of Experiment 1, and the averaged
SNR (over 100 runs of the algorithm) is plotted versus in
Fig. 5. It is clear from this figure that the final SNR achieves
its maximum for a small , and no longer improves by in-
creasing it, while the computation cost is directly proportional
to . Hence, as it was said in Remark 1 of Section III and Re-
mark 3 of Section IV-A, we generally fix to a small value, say

.

Experiment 3. Effect of Sparsity on the Performance

How much sparse a source vector should be to make its esti-
mation possible using our algorithm? Here, we try to answer this
question experimentally. As mentioned before, there is the theo-
retical limit of on the maximum number of active sources to
insure the uniqueness of the sparsest solution. But, practically,
most algorithms cannot achieve this limit [13], [15].

To be able to measure the effect of sparsity, instead of gener-
ating the sources according to the model (33), we randomly ac-
tivate exactly elements out of elements. Fig. 6 then shows
the output SNR versus , for several values of , and compares
the results with LP. Note that SL0 outperforms LP, specially in
cases where .
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Fig. 6. Averaged SNRs (over 100 runs of the algorithm) versus �, the average
number of active sources, for SL0 algorithm with several values of �, and for LP.
The parameters are � � ����, � � ���, � � �, � � ����, � � ����.

Fig. 7. Averaged SNRs (over 100 runs of the algorithm) versus the noise power
� for different values of � , and for LP. The parameters are � � ���, � �
���, � � ���, � � �, and � � ���.

It is obvious from the figure that all methods work well if
is smaller than a critical value, and they start breaking down

as soon as exceeds this critical value. Fig. 6 shows that the
breakdown value of for LP and for SL0 with is ap-
proximately 100 (half of the theoretical limit ). For

and , this breakdown value is approximately
150 and 180. Consequently, with our algorithm, it is possible to
estimate less sparse sources than with LP algorithm. It seems
also that by pushing toward 1, we can push the breaking-down
point toward the theoretical limit ; however, the computa-
tional cost might become intolerable, as well.

Experiment 4. Robustness Against Noise

In this experiment, the effect of the noise variance, , on
the performance is investigated for different values of and
is compared with the performance of LP. Fig. 7 depicts SNR
versus for different values of for both methods. The figure
shows the robustness of SL0 against small values of noise. In
the noiseless case , LP performs better (note that

, and in SL0, is decreased only to 0.005). In the noisy
case, SL0 achieves better SNR. Note that the dependence of the
optimal to is again confirmed by this experiment.

Fig. 8. Effect of scale on performance (SNRs are averaged over 100 runs of the
algorithm). � � ����, � � ���, � � �, � � ����, and SL0 is compared
with LP. In (a) � is fixed to 1000 and SNR is plotted versus � for different
values of �. In (b) SNR is plotted versus ���	�
 for different values of �, while
� is fixed to ������.

Experiment 5. Number of Sources and Sensors

In this experiment, we investigate the effect of the system
scale (i.e., the dimension of the mixing matrix, and ) on
the performance and justify the scalability of SL0.

First, to analyze the effect of the number of mixtures , by
fixing to 1000, SNR is plotted versus , for different values
of in Fig. 8(a). It is clear from this figure that both methods
perform poorly while (note that the sparsest solution is
not necessarily unique in this case). SL0 performs better as soon
as exceeds (the theoretical limit for the uniqueness of the
sparsest solution).

Then, to analyze the effect of scale, is fixed to ,
and SNR is plotted versus for different values of in
Fig. 8(b). From this figure it is obvious that SL0 and LP perform
similarly for small values of , but SL0 outperforms
LP for larger values of .

Experiment 6. Computational Cost in BSS Applications

In BSS and SCA applications, the model (34) is written as
, , where is the number of

samples. In matrix form, this can be written as ,
where , , and are respectively , and
matrices, where each column stands for a time sample.

For solving this problem with LP, the system
should be individually solved for each value of .

This trivial approach can also be used with SL0. However, since
all the steps of SL0 presented in Fig. 1 are in matrix form, it can
also be directly run on the whole matrices and . Because of
the speed of the current matrix multiplication algorithms,11 this
results in an increased speed in the total decomposition process.

Fig. 9 shows the average computation time per sample of SL0
for a single run of the algorithm, as a function of for the case

, and . The figure shows that
by increasing , average computation time first increases, then
decreases and reach to a constant. For , the computation
time is 266 ms (this is slightly different with the time of the
first experiment, 227 ms, because these are two different runs).

11Let �, � and � be � � � , � � � and � � � matrices, respectively.
In MATLAB, the time required for the multiplication �� is highly less than
� times of the time required for the multiplication ��. This seems to not be
due to the MATLAB’s interpreter, but a property of basic linear algebra sub-
programs (BLAS). BLAS is a free set of highly optimized routines for matrix
multiplications, and is used by MATLAB for its basic operations. This property
does not exist in MATLAB 5.3 which was not based on BLAS.



300 IEEE TRANSACTIONS ON SIGNAL PROCESSING, VOL. 57, NO. 1, JANUARY 2009

Fig. 9. Average computation time per sample of SL0, as a function
of � , number of (time) samples, for the case � � ����, � � ���
and � � ���. � is chosen 0.01 and the sequence of � is fixed to
��� ���� ���� �������������������, the same parameter used in first experi-
ment.

However, for , the average computation time per
sample decreases to 38 ms. In other words, in average, SL0 finds
the sparse solution of a linear system of 400 equations and 1000
unknowns just in 38 ms (compare this with 30 s for -magic,
given in Experiment 1).

VI. CONCLUSION

In this paper, we showed that the smoothed norm can be
used for finding sparse solutions of an USLE. We showed also
that the smoothed version of the norm not only solves the
problem of intractable computational load of the minimal
search, but also results in an algorithm which is highly faster
than the state-of-the-art algorithms based on minimizing the

norm. Moreover, this smoothing solves the problem of high
sensitivity of norm to noise. In another point of view, the
smoothed provides a smooth measure of sparsity.

The basic idea of the paper was justified by both theoretical
and experimental analysis of the algorithm. In the theoretical
part, Theorem 1 shows that SL0 is equivalent to -norm for a
large family of functions . Theorem 2 gives a strong assess-
ment for using -norm solution for initialization. This theorem
also suggests that the minimal norm can be seen as a rough es-
timation of the sparse solution (like MOF), which will be mod-
ified in the future iterations. Theorem 3 justifies the robustness
of SL0 against noise.

Other properties of the algorithm were studied experimen-
tally. In particular, we showed that 1) the algorithm is highly
faster than the state-of-the-art LP approaches (and it is even
more efficient in SCA applications), 2) choosing suitable values
for its parameters is not difficult, 3) contrary to previously
known approaches it can work if the number of nonzero com-
ponents of is near (the theoretical limit for the uniqueness
of the sparse solution), and 4) the algorithm is robust against
noise.

Up to now, we have no theoretical result for determining how
much ‘gradual’ we should decrease the sequence of , and it re-
mains an open problem for future works. Some open questions
related to this issue are: Is there any sequence of which guar-
anties escaping from local maxima for the Gaussian family of

functions given in (1)? If yes, how to find this sequence? If
not, what happens with other families of functions ? More-
over, is there any (counter-)example of , and for which we
can prove that for any sequence the algorithm will get trapped
into a local maximum? These issues, mathematically difficult
but essential for proving algorithm convergence, are currently
investigated. However, Experiment 2 showed that it is fairly easy
to set some parameters to achieve a suitable performance. More-
over, for an estimation of the sparsest source (obtained by any
method), we provided in Remark 5 of Section IV-A an upper
bound for the estimation error.

In addition, future works include better treatment of the noise
in the model (34) by taking it directly into account in the algo-
rithm (e.g., by adding a penalty term to ). Moreover, testing
the algorithm on different applications (such as compressed
sensing) using real-world data is under study in our group.
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