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On the Error of Estimating the Sparsest Solution of
Underdetermined Linear Systems
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Abstract—Let be an matrix with , and suppose
that the underdetermined linear system admits a sparse
solution for which . Such a sparse solution is
unique due to a well-known uniqueness theorem. Suppose now that
we have somehow a solution as an estimation of , and suppose
that is only “approximately sparse,” that is, many of its compo-
nents are very small and nearly zero, but not mathematically equal
to zero. Is such a solution necessarily close to the true sparsest so-
lution? More generally, is it possible to construct an upper bound
on the estimation error without knowing ? The answer
is positive, and in this paper, we construct such a bound based on
minimal singular values of submatrices of . We will also state a
tight bound, which ismore complicated, but besides being tight, en-
ables us to study the case of random dictionaries and obtain prob-
abilistic upper bounds. We will also study the noisy case, that is,
where . Moreover, we will see that where grows,
to obtain a predetermined guaranty on themaximum of
is needed to be sparse with a better approximation. This can be
seen as an explanation to the fact that the estimation quality of
sparse recovery algorithms degrades where grows.

Index Terms—Atomic decomposition, blind source separation
(BSS), compressive sensing (CS), overcomplete signal represen-
tation, sparse component analysis (SCA), sparse decomposition,
sparse source separation.

I. INTRODUCTION AND PROBLEM STATEMENT

S PARSE solution of underdetermined systems of linear
equations has recently attracted the attention of many

researchers from different viewpoints, because of its potential
applications in many different problems. It is used, for example,
in compressed sensing (CS) [1]–[3], underdetermined sparse
component analysis (SCA) and source separation [4]–[7],
atomic decomposition on overcomplete dictionaries [8], [9],
decoding real field codes [10], image deconvolution [11], [12],
image denoising [13], electromagnetic imaging and direction
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of arrival (DOA) finding [14], etc. The importance of sparse
solutions of underdetermined linear systems comes from the
fact that although such systems have generally an infinite
number of solutions, their sparse solutions may be unique.
Let be an matrix with ,

where ’s, , denote its columns, and consider the
underdetermined system of linear equations (USLE)

(1)

By the sparsest solution of the above system one means a solu-
tion which has as small as possible number of nonzero com-
ponents. In signal (or atomic) decomposition viewpoint, is
a signal which is to be decomposed as a linear combination
of the signals ’s, , and hence, ’s are usu-
ally called [15] “atoms,” and is called the “dictionary” over
which the signal is to be decomposed. When the dictionary is
overcomplete , the representation is not unique, but
by the sparsest solution, we are looking for the representation
which uses as small as possible number of atoms to represent
the signal.
It has been shown [14], [16], [17] that if (1) has a sparse

enough solution, it is its unique sparsest solution. More pre-
cisely, we have the following theorem.

Theorem 1 (Uniqueness Theorem [16], [17]): Let
denote the minimum number of columns of that are linearly
dependent, and denote the -norm of a vector (i.e., the
number of its nonzero components). Then, if the USLE
has a solution for which , it is its unique
sparsest solution.

A special case of this uniqueness theorem has also been stated
in [14]: if satisfies the unique representation property (URP),
that is, if all submatrices of are nonsingular, then

and hence implies that is
the unique sparsest solution.
Although the sparsest solution of (1) may be unique, finding

this solution requires a combinatorial search and is generally
NP-hard. Then, many different sparse recovery algorithms have
been proposed to find an estimation of , for example, basis
pursuit (BP) [8], matching pursuit (MP) [15], FOCUSS [14],
smoothed L0 (SL0) [18], [19], SPGL1 [20], IDE [21], ISD [22],
etc.
Now, consider the following two different cases.
• Exact sparsity: We say that a vector is sparse in the exact
sense if many of its components are exactly equal to zero.
More precisely, is said to be -sparse in the exact sense
if it has at most nonzero entries (and all other entries are
exactly equal to zero).
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• Approximate sparsity: We say that a vector is sparse in
the approximate sense if many of its components are very
small and approximately equal to zero (but not necessarily
“exactly” equal to zero). More precisely, is said to be
-sparse with approximation if it has at most entries
with magnitudes larger than .

Some of the sparse recovery algorithms (e.g., BP based on
Simplex linear programming) return estimations which are
sparse in the exact sense, while some others (e.g., MP with
large enough iterations, SL0, FOCUSS, and SPGL1) return
solutions which are sparse only in the approximate sense.
Suppose now that by using any algorithm (or simply by a

magic guess) we have found a solution of , as an es-
timation of the true sparsest solution . The question now is:
Noting that is unknown, is it possible to construct an upper
bound for the estimation error only from , where
stands for the -norm? For example, if satisfies the URP, and

is less than or equal to , where stands for the
largest integer smaller than or equal to , then the uniqueness
theorem ensures that . On the other hand, if all the com-
ponents of are nonzero but its th largest magnitude
component is very small, heuristically we expect to be close to
the true solution , but the uniqueness theorem says nothing
about this heuristic.
In this paper, we will see that the answer to the above ques-

tion is positive, and we will construct upper bounds on
without knowing , which depend on the matrix and (in the
case satisfies the URP) are proportional to the magnitude of
the th largest component of . Consequently, if the

th largest component of is zero, then our upper
bounds vanish, and hence . This is, in fact, the same re-
sult provided by the uniqueness theorem, and hence our upper
bounds can be seen as a generalization of the uniqueness the-
orem. In other words, from the classical uniqueness theorem, all
that we know is that if among components of
components are “exactly” zero, then , but if has more
than nonzero components (even if of its com-
ponents have very small magnitudes) we are not sure to be close
to the true solution. As we will see in this paper, our upper
bounds, however, ensure that in the second case as well, we are
not far from the true solution. Moreover, the dependence of our
upper bounds on provides some explanations about the sen-
sitivity of the error to the properties of the matrix .
Constructing an upper bound on the error can also

be found in some other works, e.g., [23]–[25]. In some of these
works (e.g., [23] and [24]), the bounds are probabilistic, that
is, they are obtained for random dictionaries and shown to be
held with probabilities larger than certain values. Being non-
deterministic, these bounds cannot be used to infer determin-
istic results. For example, they cannot be used to say whether
the heuristic stated above (that is, “if has at most “large”
components, then it is close to the true solution”) is generally
true, while our bounds answer this question. Another difference
between our bounds with those of [23] and [24] is that in [23]
and [24] it has been assumed that we have at hand an algorithm
for estimating the sparsest solution of an underdetermined linear
system and several calls to this algorithm are required, whereas
in this paper, we have at hand only a single estimation of

the sparsest solution , and we are going to develop upper
bounds on the error without knowing . Moreover,
the bounds in some of these works (e.g., [24] and [25]) have
been constructed for specific methods used for finding the es-
timation , e.g., minimizing - or -norm for ,
whereas in this paper we are discussing the bounds based on
itself and independent of the method used for its estimation: it
may be obtained by any algorithm or by a magic guess. In fact,
to our best knowledge, constructing a deterministic bound on

and independent of the method used for obtaining
has not previously been addressed in the literature. Note how-
ever that although our deterministic bounds can be used to infer
deterministic results, they are not suitable for practical calcula-
tion, because they need asymmetric restricted isometry constant
(ARIC) [25], [26] of a dictionary, or similar quantities, whose
calculations are computationally intractable for large matrices
(note however that these quantities have to be calculated only
once for each dictionary). We will also present a probabilistic
bound for random dictionaries, which is again independent of
the method used to obtain the estimate .
A related problem has already been addressed in [27], in

which, for the noisy case , deterministic upper
bounds have been constructed for the error (for a set of
different ’s including ). However, in that paper it has been
implicitly assumed that is sparse in the exact sense, that is,

, otherwise, their upper bounds grow to infinity.
On the other hand, if the noise power is set equal to zero,
the upper bounds of [27] for vanish, resulting again in
the uniqueness theorem. In other words, reference [27] can be
seen somehow as a generalization of the uniqueness theorem to
the noisy case, whereas our paper can be seen as a generaliza-
tion of the uniqueness theorem to the case where is not sparse
in the exact sense. We will also consider in Section V the case
where there is noise, and is sparse in the approximate sense.
Some error bounds for the noisy case have also been obtained in
[9], but those bounds are for specific algorithms for estimating
, while our bounds are only based on itself and independent

of the method used for finding it.
Some parts of this work have been presented in the confer-

ence paper [28]. Here, we study the problem more thoroughly
(without repeating some details of that conference paper), and
we provide also a tight bound on the above error. Imposing no
assumption on the normalization of the columns of the dictio-
nary, this tight bound will enable us to obtain a probabilistic
upper bound. Moreover, we address the noisy case where is
sparse in the approximate sense.
The paper is organized as follows. In Section II, we review

the first result already stated in [19], which provides the basic
idea of this paper. Then, in Section III, we present a bound based
on minimal singular values of the submatrices of the dictionary.
Our tight bound is then presented in Section IV. By considering
the noisy case in Section V, we complete our discussion on de-
terministic dictionaries before studying random dictionaries in
Section VI.

II. THE FIRST BOUND

The first result has been given in Corollary 1 of Lemma 1
of [19] during the analysis of the convergence of the SL0 al-
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Fig. 1. The definition of : Sort the magnitudes of the entries of in
descending order. Then, is the magnitude of the ’s element (denoted
by in the figure).

gorithm. We review that result here (with a few changes in
notations).
For the matrix , let , denote the

set of all matrices which are obtained by taking columns of .
Moreover, let , and
define

(2)

where stands for the Moore–Penrose pseudoinverse of ,
and denotes the Frobenius norm of a matrix. The con-
stant depends only on the dictionary . Moreover, for a
vector and a positive scalar , let denote the number
of components of which have magnitudes larger than . In
other words, denotes the -norm of a thresholded ver-
sion of in which the components withmagnitudes smaller than
or equal to are clipped to zero.
The Corollary 1 of Lemma 1 of [19] states the following.

Corollary 1 (of [19]): Let be an matrix with unit
-norm columns which satisfies the URP and let .

If for an has at most components with absolute values
greater than (that is, if ), then

(3)

We define now the following notation (see also Fig. 1).

Definition 1: Let be a vector of length . Then,
denotes the magnitude of the th largest magnitude component
of .

Then, using Corollary 1, Remark 5 of Theorem 1 of [19]
states the following idea to construct an upper bound on

: Let . Since the true sparsest solution
has at most nonzero components, has at most

components with absolute values greater than , that is,
. Moreover, and hence

Corollary 1 implies that

(4)

This result is consistent with the heuristic stated in the introduc-
tion: if has at most “large” components, the uniqueness of
the sparsest solution ensures that is close to the true solution.

III. A BOUND BASED ON MINIMAL SINGULAR VALUES

Bound (4) is not easy to be analyzed and worked with. Espe-
cially, the dependence of the bound on the dictionary (through

the constant ) is very complicated. Moreover, calculating the
constant for a dictionary requires calculation of the pseu-

doinverses of all of the elements

of . In this section, we modify (4) to obtain a bound
that is easier to be analyzed and (in a statistical point of view)
its dependence to (the statistics of) is simpler. Moreover, we
state our results for more general cases than where satisfies
the URP.

A. Definitions and Notations

For a matrix , let or denote its smallest
singular value.1 Similarly, we denote its largest singular value
by or . We now define the following notations
about the dictionary .
• Let . Then, by definition, all

columns of are linearly independent, and there is at
least one set of columns which are linearly dependent
(in the literature, the quantity is usually called “Kruskal
rank” or “ -rank” of ). It is also obvious that ,
where corresponds to the case where satisfies the
URP.

• Let or denote the smallest singular value
among the singular values of all submatrices of obtained
by taking columns of , that is

(5)

Note that since all columns of are linearly independent,
we have , for all .
Recall now the following lemma [30, p. 419] (we presented a

direct simple proof for the first two parts of this lemma in [28]).

Lemma 1: Let be an matrix, and let denote the
matrix obtained by adding a new column to . Then:
a) if ( is tall), then ;
b) if ( square or wide), then ;
c) we always have .

Using the above lemma, the sequence ,
is decreasing for and increasing for .
More precisely, if (URP case), we have

(6)

and if , we have

(7)

1In some references, e.g., [29], the singular values of amatrix are defined to be
strictly positive quantities. This definition is not appropriate for this paper. We
are using the more common definition of Horn and Johnson [30, pp. 414–415],
in which, the singular values of a matrix are the square roots of the

largest eigenvalues of (or ). Using this definition,
there are always singular values, where a zero singular value charac-
terizes a (tall or wide) non-full-rank matrix.
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Note also that (6) and (7) imply that for

(8)

Remark: The quantity defined in (5) is closely related to the
restricted isometry property (RIP) [10], [31], and is in fact the
left asymmetric restricted isometric constant (ARIC) of [25],
[26]. As introduced in [10], the restricted isometry constant
(RIC) of is defined as the smallest such that

for all vectors with .
The lower and upper bounds of this inequality are symmetric,
and hence Foucart and Lai [25] and Davies and Gribonval [26]
introduced asymmetric RICs, which are defined as the best
and such that for all vectors

with . Comparing with (8), it is seen that the
left ARIC is the same quantity denoted by above.

B. The Upper Bound

Now we state the main theorem of this section.

Theorem 2: Let be an matrix with unit
-norm columns. Suppose that is a solution of for

which , where is an arbitrary integer less than
or equal to . Let be a solution of , and define

. Then

(9)

Before going to the proof, let us state a few remarks on the
consequences of the above theorem.

Remark 1: Suppose that has a sparse solution
which satisfies . By setting in (9),
which is the largest satisfying the conditions of the theorem,
we will have

(10)

If the estimated sparse solution satisfies also , then
, hence the upper bound in (9) vanishes, and therefore

. In other words, the above theorem implies that a solution
with is unique, that is, the above theorem implies
the uniqueness theorem. For example, for the special case of
satisfying the URP , if we have found a solution
satisfying , we are sure that we have found the unique
sparsest solution.

Remark 2: Moreover, if the estimated sparse solution is
sparse only in the approximate sense, that is, if compo-
nents of have very small magnitudes, then is small, and
bound (10) states that we are probably (depending on the matrix
) close to the true solution. Moreover, in this case, de-

termines some kind of sensitivity to the dictionary: For example,
if the URP holds but there exists an square sub-
matrix of which is ill-conditioned, then is very small

and hence for achieving a predetermined accuracy, should
be very small, that is, the sparsity of should be held with a
better approximation.

Remark 3: Theorem 2 states also some kind of “sensitivity”
to the degree of sparseness of the sparsest solution . Let

, and set in (9), and suppose that . Then,
the conditions of Theorem 2 have been satisfied and hence (9)
becomes

(11)

In other words, whenever is sparser, is smaller, hence from
(6) and (7), is larger, and therefore a larger is tol-
erable (that is, we have less sensitivity to exact sparseness of ).
This can somehow explain the fact that sparse recovery algo-
rithms work better for sparser ’s [19].

C. Proof

To prove Theorem 2 we first state a modified version of (3).

Proposition 1: Let be an matrix with
unit -norm columns, and assume that any columns of are
linearly independent . Let . If for an

, then

(12)

Proof: The proof is based on some modifications to the
proof of Lemma 1 of [19].
Let be the number of components of with magnitudes

larger than , and be the number of components of with
magnitudes smaller than or equal to . In other words,

and (indexes and in and
stand for “Large” and “Small”). We consider two cases.
Case 1 ( and ): In this case, all the compo-

nents of have magnitudes less than or equal to , and hence
we can simply write which satisfies also
(12).
Case 2 ( and ): In this case, there is at

least one component of with magnitude larger than . Let be
composed of the components of which have magnitudes larger
than , and be composed of the corresponding columns of
. Similarly,2 let be composed of the components of which

have magnitudes less than or equal to , and is composed
of the corresponding columns of . Since

, and define

(13)

From

(14)

2In MATLAB notation .
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From

(15)

Note that in the above equations, the assumption was
essential, otherwise and could be zero. Com-
bining now (14) and (15), we will have

(16)

Moreover, . Therefore

(17)

Now, from definition (5) and Lemma 1,
, which proves the proposition.

Proof of Theorem 2: has at most nonzero compo-
nents and has at most components with magnitudes larger
than . Therefore, has at most components with magni-
tudes larger than . Moreover, . Hence, the
conditions of Proposition 1 hold for and ,
which proves the theorem.

IV. A TIGHT BOUND

Although the bound in (9) is relatively simple, except for the
trivial case , the equality in (9) can never be satisfied
(as will be explained in the proof of Theorem 3). Therefore, for
an approximate sparse , the bound in (9) is not tight. In this
section, we present a tight bound on the estimation error
, which does not depend only on minimal singular values of

submatrices of , but also depends on a quantity defined
below.

A. Definitions and Notations

Definition 2: Let be an matrix and . For any
, let denote the matrix composed of the columns

of , which are not in . For , we define

(18)

Note that while , and hence
for .

Definition 3: Let matrix be as in the previous definition.
For , we define the quantities

(19)

(20)

(21)

We also use the notations and to denote the
largest and over the whole range of , that
is, , and

.

Remark: Note that the sequence ,
is not necessarily increasing. In effect, by taking one
column from a matrix and appending it to a matrix
, the ratio does not necessarily in-

crease, because both of its numerator and denominator
decrease by Lemma 1. As an example, for the matrix

, which has normalized columns (up to
two decimal points), the sequence is approximately equal
to . Similarly, the sequence is not
necessarily increasing. For the above matrix, this sequence is
approximately equal to . However, as we
will see in Section VI, for large random matrices with inde-
pendently and identically distributed (i.i.d.) Gaussian entries,
these sequences are both almost surely increasing (see Remark
3 after Lemma 4).

B. The Upper Bound

Now we are ready to state the main theorem of this section,
which provides a tight upper bound on .

Theorem 3: Let be an matrix , and suppose
that is a solution of for which , where
is an arbitrary integer less than or equal to . Let be a
solution of , and define . Then

(22)

Moreover, if the columns of are of unit -norm, then

(23)

Remark 1: For deterministic dictionaries, one usually uses
normalized atoms, for which (23) holds. However, (22) will be
useful for random dictionaries (Section VI) with i.i.d. entries,
for which having the unit -norm cannot be guaranteed. Note
also that if we normalize the columns of such a random dictio-
nary, its entries would no longer be independent.

Remark 2: In particular, by setting in (23), bound (10)
is modified to , and for the URP case

(24)

In other words, if we know the constant for our dictio-
nary, its multiplication by the th largest magnitude
component of the estimation would be an upper bound on the
estimation error . Like in (9), this ensures that if we
have obtained an approximate sparse solution of , we
are probably close to the true sparsest solution. However, unlike
(9), the bound in (24) is tight. We will see in Section IV-D an
example for which the equality in (24) is satisfied.

C. Proof

From the proof of Theorem 2, it can be seen that if we obtain
an upper bound for where satisfies
for an , we will obtain a bound for for
. Such a bound is given in the following proposition, as a

modification to Proposition 1.
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Proposition 2: Let and be as in Theorem 3. Let
, and suppose that for an . Let also

and denote the number of entries of with magnitudes
larger than, and less than or equal to , respectively.
a) Case and (i.e., where all entries of have

magnitudes smaller than or equal to ). Then

(25)

b) Case and . Let and be
composed of the columns of , which correspond to the entries
of that have magnitudes larger than , and less than or equal
, respectively. Then

(26)

Proof: The bound in (12) is not tight because several in-
equalities used in its proof are not tight. Indeed, the equalities
of the last inequality in (14) and also the first inequality in (17)
can never be met (unless for the trivial case ). Hence,
we prove the proposition by modifying the proof of Proposition
1. Moreover, as opposed to what has been done in (17), in this
proof we do not use the assumption that the columns of are
normalized.
Note first that for a vector , if

, then

(27)

and the equality holds if and only if .
Proof of Part a) (Case and ): In this case,

(27) directly implies (25), where the equality holds if and only
if . Moreover, for the equality being
satisfied, has to be in , that is, ,
where ’s are the columns of . Hence, the upper bound in
(25) is tight, and is achieved only for the dictionaries for which a
linear combination of their columns with or coefficients
vanishes .
Proof of Part b) (Case ): We follow the

same argument as in the proof of Proposition 1, but instead of
(14), we write

(28)

Combining it with (15), we will have [instead of (16)]

(29)

Finally, instead of (17), we write , and
hence from the above inequality, we will have

(30)

Finally, we use (27) again to write , which in
combination with the above inequality gives (26).

To prove Theorem 3, we also need the following lemma,
proof of which is left to Part A of the Appendix.

Lemma 2: Let be an matrix with unit
-norm columns. Then, .

Proof of Theorem 3: Note that . More-
over, has at most nonzero components and has at most

components with magnitudes larger than . Therefore,
has at most components with magnitudes larger than

, that is, it has either , or , , or components with mag-
nitudes larger than . If it has components larger
than , from (26), we have

(31)

because has been defined as the maximum of
for all possible choices

of and . On the other hand, if has no components
larger than , from (25), we have .
This completes the proof of (22). Then, combining it with
Lemma 2 proves (23).

Experiment: To experimentally compare the “first bound”
given in (9) and the “second bound” given in (23), we conduced
a simple experiment. First, we generated a random of dimen-
sion by generating each of its entries using distri-
bution, and then divided each of its columns by its norm to ob-
tain a unit norm column matrix . We generated then a random
sparse by randomly choosing the positions of of its
entries and then assigning random magnitudes [drawn from a

distribution] to these positions and zero to other posi-
tions. Then, was calculated and and were given to
SL0 algorithm and the parameter of SL0 was chosen rela-
tively large to force SL0 to create a not so accurate estima-
tion . Then, the actual error , the “first bound,” and
the “second bound” were calculated by setting (note that
is of relatively small dimensions, permitting exact calculation

of and using a combinatorial search). The whole
experiment was repeated one hundred times by regenerating
and . The average values of the ratios (first bound)/(actual
error) and (second bound)/(actual error) through these one hun-
dred experiments were 47.4 and 16.2, respectively. It is seen that
the second bound is highly tighter than the first bound. More-
over, although the ratio (second bound)/(actual error) is seen
to be in average 16.2, this bound is in fact a tight bound, in
the sense that there are instances of , and such that the
equality in (23) holds. Such an example is given in Section IV-D,
proving the tightness of this bound.

D. Example of Equality in Theorem 3

To show that the bound given in Theorem 3 is tight, we
present the following tricky example, which is stated in the
form of a proposition.
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Fig. 2. The columns of the matrix in (32) are shown as the vectors
and .

Proposition 3: The estimation error achieves its
upper bound in (24) for

(32)

for any 38.6683 , any , and
.

For example, for 5 and , we have the following
example (up to four digits), which achieves the upper bound of
(24):

Note that in this example is an approximately sparse solu-
tion of , where , but it is completely different
from .
For proof, we need the following lemma.

Lemma 3: a) Let be a single-column matrix (i.e., a column
vector), and this column has unit -norm. Then, the sole sin-
gular value of is equal to .
b) Let be two-column matrix (with more than one row),

columns of which, and , have unit -norm. Then, the
two singular values of are equal to and

, where , in which is
the angle between and . Note that a smaller angle results
both in smaller and larger .

Proof: The result is simply obtained by direct calculations
of the eigenvalues of .

Proof of Proposition 3: Step 1) Note that satisfies the
URP. By defining , it can be easily verified that both
and are solutions of . Moreover, for 60 ,

we have and hence .
Step 2) Calculating : From definition (18), for
has only one column and hence from Lemma 3.

Let and denote the columns of , respectively. These
vectors are drawn in Fig. 2. To maximize among the
three possible choices for , using Lemma 3, we have to find

the two vectors for which the absolute value of the cosine of
their angles is maximum. Simple consideration of Fig. 2 shows
that for 60 the maximum of is obtained for

. Consequently,
.

Step 3) Calculating : From definition (18), for
has only one column and hence from Lemma

3. Among the three possible choices for , using Lemma 3, it
can be seen that for 60 the minimum of
is obtained for . Consequently,

.
Step 4) Comparing and : Simple algebra shows

that

where . Hence, since by the
assumption , we will have

(33)

Step 5) Now, for , we write

which completes the proof.

V. THE NOISY CASE

Instead of the noiseless system (1), consider now the noisy
case

(34)

where denotes the noise vector, and with .
In SCA applications, denotes the measurement noise in sen-
sors, and in sparse signal decomposition applications, (34) is for
modeling approximate signal decomposition, in which is the
acceptable tolerance of the decomposition.
In presence of noise, the minimum -norm solution of
is not stable, in the sense that if (in which

is sparse), then the minimum -norm solution of may
be completely different from , even for very small amount of
noise [9], [32]. Hence, instead of finding the sparsest solution
of , it is proposed to estimate as [9]

(35)

for a . This approach ensures the stability in the sense
that grows at worst proportionally to the noise level
[9], [33] (other variants of the above expression have also been
studied in the literature, for example, replacing the -norm
with -norm, or replacing the -norm in by and
-norms [9], [34]–[37]).
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In this section, we are going to study the generalization of the
main question of previous sections to this noisy case: If we have
an estimation satisfying , and if is sparse
only in the approximate sense,3 is it possible (without knowing
) to construct an upper bound on the error ? Indeed,

we will first generalize the looser bound (9). Then, it will be
seen that the tight bound (23) would not be easy to generalize
as a closed-form formula.

A. Generalizing the Looser Bound (9)

1) The Theorem: The generalization of the looser bound to
the noisy case is given by the following theorem.

Theorem 4: Let be an matrix with unit
-norm columns. Let , where and

, in which is an arbitrary integer less than or equal
to . Let be an estimation of satisfying ,
and define . Then

(36)

where .

Remark 1: For (which corresponds to the noiseless
case), the above bound reduces to the looser bound for the noise-
less case, i.e., (36) reduces to (9).

Remark 2: It is also interesting to consider the case .
It corresponds to the case where is sparse in the exact sense,
e.g., where is an exact solution of (35) for a . In this case,
bound (36) becomes

(37)

The above inequality holds for all values of satisfying the con-
ditions of the theorem, and hence also for (which is
the largest possible ). This proves that problem (35) is stable
for all , i.e., for the whole range of unique-
ness of the sparse solution, while in [9], this stability has been
proved only for the highly more limited range ,
where is the mutual coherence of . We have discussed this
generalization of the stability and the inequality (37) in the cor-
respondence4 [33].
2) Proof: To prove the above theorem, we need to first gener-

alize Proposition 1 to the noisy case. This is given in Proposition
4, which is based on a modification of [19, Lemma 4].

Proposition 4: Let be an matrix with
unit -norm columns, and assume that any columns of
are linearly independent . Let be a vector satisfying

3Such a solution may be obtained for example using robust-SL0 [38].
4In fact, in that correspondence, we have even presented a more general re-

sult: We have shown that even minimizing in (35) is not necessary, that
is, the stability results only from for the whole uniqueness
range , provided that estimation satisfies also

.

for a constant . If for ,
then

(38)

Proof: The proof is based on modifications in the proof of
Proposition 1. Let and be as defined in that proof.
Case 1 ( and ): It is exactly like the proof of

Proposition 1, which satisfies also (38).
Case 2 ( and ): Let and be as

defined in the proof of Proposition 1.We define again ,
but is no more equal to . Similarly to (14), we have

. For upper bounding , instead of (14),
we use the general inequality to
write

(39)

Putting this in (15), we have [instead of (16)]

(40)

and hence (17) becomes

(41)

which in combination with completes the
proof.

Proof of Theorem 4: Similarly to the proof of Theorem 2,
has at most components with magnitudes larger than

. However, here is not necessarily in . Instead,
we use the general inequality to
write

(42)

Therefore, satisfies the conditions of Proposition 4
for , which completes the proof.

B. Generalizing the Tight Bound (23)

In this section, we will see that obtaining a “closed-form” ex-
pression as a generalization of the tight bound (23) to the noisy
case would not be easy. In fact, it is seen that the generalization
of the looser bound was based on generalizing Proposition 1 to
Proposition 4. Similarly, we can also generalize Proposition 4
to the noisy case.

Proposition 5: Let , and be as in Proposition 4.
Let and denote the number of entries of with magni-
tudes larger than, and less than or equal to , respectively.
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a) Case and . We have

(43)

b) Case and . Let and be
composed of the columns of which correspond to the entries
of that have magnitudes larger than , and less than or equal
to , respectively. Then

(44)

Proof: Part a) The proof is the same as the proof of part a)
of Proposition 2.
Part b) Let again . With similar reasoning as in

(39) we have . Moreover,
, and hence

(45)

Combining it with (15), we will have

(46)

Moreover, [from (27)]. Combining this,
the above inequality, and proves the
proposition.

However, although Proposition 4 was generalized to Propo-
sition 5, it would be tricky to use it to obtain a closed-form gen-
eralization of (23) to the noisy case. To see the difference, recall
the argument of using (26) to obtain (23) [which is the same
argument as using (12) to obtain (9)]: Under the conditions of
Theorem 3, satisfies the conditions of Proposition
2 for . However, since we do not know , we do not
know which components of are smaller and which ones are
larger than , and hence, we do not know and . There-
fore, we consider the worst case of the bound given by (26), that
is, we maximize the right-hand side of (26) on all possible par-
titionings of into and (where the number of columns
of is at most equal to ). The point is that the right-hand side
of (26) was in a form that its maximization with respect to all
possible partitionings of was independent of , and gave us
the bound (23), in which, we had a constant which is in-
dependent of , and depends only on the dictionary.
However, with the same reasoning, to obtain an upper

bound on under the conditions of Theorem 4, we
have to maximize the right-hand side of (44) with respect to
all possible partitionings of into and (where the
number of columns of is at most equal to ). However,
here, this maximization depends also on and , because

and are not necessarily

maximized5 for the same partitioning of . Consequently, we
can probably say nothing better than the following theorem.

Theorem 5: Let all parameters be as defined in Theorem 2.
Let and let denote the matrix composed by the
columns of that are not in . Define

(47)

Then

(48)

Moreover, if has unit -norm columns, then

(49)

Remark: In Theorems 2–4, the quantities or are
calculated only once for each dictionary, and then they are used
with (and probably ) of a specific problem. However, in
the above theorem, the dictionary, and interact, and hence
the upper bound should be calculated for each specific problem
separately and since this calculation is NP-hard, its usage in
practical problems is probably limited.

VI. RANDOM DICTIONARIES

Theorems 2 and 3 suggest that and/or are im-
portant parameters of a dictionary. However, estimating these
parameters for a deterministic matrix seems to be NP-hard (this
has already been proven for estimating [39]). In effect,
calculating requires examination of all subma-
trices of , and calculation of requires examination of all

submatrices of for . These tasks are com-
binatorial and intractable (although they have to be done only
once for a given dictionary). Moreover, even finding a compu-
tationally tractable lower bound for or an upper bound
for would provide us a computable upper bound for the
error.
On the contrary, for a random with i.i.d. entries, we need

no more to examine all of its submatrices to obtain

probabilistic upper bounds, because all submatrices
are statistically identical. On the other hand, singular values
of random matrices have extensively been studied in the lit-
erature [40], [41]. Indeed, it is well known that the singular
values of random matrices are not “so random” and are highly
concentrated around some deterministic values [42, Th. 2.7].
Random dictionaries are also practically important, e.g., they

5Using a small MATLAB code, it is easy to find examples of for which
these two quantities are maximized for different partitionings.
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are frequently used in compressed sensing [3]. Note also that
random matrices satisfy the URP with probability 1.
In this section, we consider random dictionaries, and state

some probabilistic upper bounds for the estimation error
without knowing , and independent of the method

used for estimating .

A. Review of Some Results From Random Matrix Theory

Let be an random matrix with i.i.d. entries with zero
mean and variance (hence the expected values of the -norm
of its columns are equal to ). A famous result by Marc̆henko
and Pastur [41, Th. 2.35] states that if the entries of come from
any distribution with fourth-order moment of order , as

and , the empirical distribution of sin-
gular values of converges almost surely (a.s.) to a distribu-
tion bounded between and . Moreover, if the
entries come from any distribution with finite fourth-order mo-
ment, has been shown [43] to converge a.s. to
(this result has been first stated by Geman [44] under some
more restrictive conditions). Similarly, if (i.e., for
tall matrices), it has been shown (first in [45] for the Gaussian
case and then in [46] for any distribution with finite fourth mo-
ment) that . As is said in [46], it is ob-
vious that a similar result holds also for wide matrices, that is,
where . To see this, let . Then,
is a tall matrix with i.i.d. zero-mean elements with vari-
ance , and hence, , and con-

sequently, . Hence, generally, if ,
then . The case is, however,
more complicated. For example, for Gaussian square random
matrices , if , then the probability density func-
tion (pdf) of the random variable converges to a simple
known function [40, Th. 5.1], [47]. In other words, for , as

, the pdf of converges to a Dirac delta function
(i.e., converges a.s. to a deterministic value), but this
is not true for .
Moreover, if (tall matrix), and the entries of are

drawn from a distribution, then a result due to
Davidson and Szarek [42, Th. 2.13], [48, (4.35) and (4.36)]
states that for any

(50)

(51)

Note that the second inequality is mostly useful for
(otherwise it is trivial).

It is not difficult to see that similar equations hold also for
wide matrices. To show it, let be an random matrix
with (wide matrix) and with elements drawn from an

distribution (again normalized columns in expected
value). Then, is a tall matrix with

entries, for which we can write the above inequal-
ities. For example, by writing (50) for , we have

Hence, by defining , we have

Consequently, (50) also holds for wide matrices. Similarly, it
can be seen that for wide matrices , inequality (51)
becomes

(52)

B. Definitions and Notations

Let the dictionary be a random matrix with
and with i.i.d. entries drawn from an distribution.
In this section, we use Theorem 3 and Davidson and Szarek
inequalities to obtain a probabilistic upper bound for the error

.

Remark: Note that the -norms of the columns of such an
are not necessarily equal to one (although their expected values
are equal to one). Hence, we cannot use the bound given in
Theorem 2 for this , because that theorem requires that the
columns of have unit -norms. Moreover, if we normalize
the columns of by dividing them by their -norms, the new
entries would no longer be independent, and consequently, we
cannot use Davidson and Szarek inequalities and many other
results in random matrix theory which require independent en-
tries. Hence, it is not straightforward6 to obtain a probabilistic
bound based on Theorem 2 (this is a mistake that we had done
in the conference paper [28]). However, Theorem 3 does not re-
quire unit -norm columns, and we can use it to obtain a prob-
abilistic upper bound on .

Note that the bound in Theorem 3 is based on the quantities
and defined in (18) and (19), respectively. Hence,

to obtain a probabilistic bound on the error , we obtain
probabilistic upper bounds for these quantities.
For the random dictionary defined above, for any division

of into and as stated in the definition of , from
the results of random matrix theory stated in Section VI-A, we
expect that and are close to and

6In a personal e-mail communication with M. Babaie-Zadeh, P. Szarek has
generalized (51) to the case where the elements of are first drawn indepen-
dently from a zero mean Gaussian distribution and then each column is divided
by its -norm to obtain a unit -norm column dictionary. The final bound is
looser than (51) and is in a more complicated form. Hence, obtaining a proba-
bilistic bound based on Theorem 2 is indeed possible, but is not straightforward.
We do not consider it in this paper because the error bound is both looser and
more complicated.
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, respectively. Hence, and are
expected to be close to quantities

(53)

and

(54)

respectively. More precisely, the results of Section VI-A imply
that where while converges to a constant and

converges to a constant strictly smaller than , then
and will converge a.s. to and , respectively.
To measure the deviation of and from the above

quantities (to larger values), let us define the shorthands

(55)

(56)

However, note that the bound of Theorem 3 depends mainly
on the quantities and , not . In other words,
we need to maximize (or ) over . The
following lemma, whose proof has been left to the Appendix,
shows that the sequences defined above, i.e., and

and hence and (as the special case of
and for ), are all increasing with respect
to . Therefore, it shows that the above maximum is obtained
for .

Lemma 4: The sequence , where
, is strictly increasing for all and
. Moreover, .

Remark 1: The above lemma shows that sequences and
are also increasing, because the product of

and the decreasing (and positive) sequence has become
an increasing sequence.

Remark 2: Note that for large dictionaries (more precisely
where while converges to a constant and
converges to a constant strictly smaller than ), con-
verges a.s. to . The above lemma states hence that for large
dictionaries the sequence is almost surely increasing and
hence a.s. . Moreover, the second part
of the above lemma states that a.s.

.

Remark 3: In the Remark after Definition 3 in Section IV-A,
we have provided an example of a matrix for which se-
quences and were not increasing. Matrix of
that example was of very small size, and the above remark states
that where the size of the dictionary grows finding such exam-
ples becomes more and more difficult.

C. Probabilistic Bounds on

In this section, we state two theorems as probabilistic upper
bounds on the error, where the dictionary is randomwith i.i.d.
Gaussian entries. The first theorem states a bound for dictio-
naries of any size, whereas the second theorem considers the
case of large dictionaries.

Theorem 6: Let be an , random matrix
with i.i.d. and zero-mean Gaussian entries. Let be an integer
in the range . Suppose that is a solution of

for which . Let be a solution of ,
and define . Then, for all and

(57)

Remark 1: When is random as in Theorem 6, it satisfies
the URP with probability 1, and hence by the uniqueness the-
orem, any solution with would be unique. Suppose,
however, that (not ) and set .
Then, and hence from (57)

(58)

Remark 2: Note that when grows, (58) does not necessarily
provide a good upper bound on , in the sense that as
increases, the probability that does
not necessarily decrease exponentially to zero. The point is that
the maximum value for in Theorem 6 is , hence,
where increases, although the term in increases,
has to be smaller, and hence does not necessarily

decrease. In fact, the degree of sparsity of plays an important
role here. For example, let us choose , and suppose that
is equal to its maximum theoretical value (which is ,

because we had already excluded that turns
to infinity). We expect heuristically that for large ’s, is

close to . Taking into

account the form of the denominator of , for having
not too far from , let us choose the value of as

a small fraction of , that is, let ,
where . Then, from (58)

(59)

where . Consider now the exponent

. If , this exponent is in fact a decreasing
function of , and converges to where . Consequently,
by increasing , not only does not decrease, but also it
increases to .
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Another way to see the above problem is to note that, as stated
after (53), for large matrices converges to only
if converges to a value “strictly” smaller than 1. This is
also seen from the discussion at the end of the first paragraph of
Section VI-A.
On the other hand, if can be at most equal to a frac-

tion of , say , where , then
, which exponentially

decreases where . The right-hand side of (58) does not
yet necessarily decrease, however, due to the combinatorial
part. We can, however, state the following theorem, for smaller
’s (as will be discussed after the theorem).

Theorem 7: Let be an , random matrix with
i.i.d. zero-mean Gaussian entries. Suppose that is a solution
of with sparsity , i.e., . Let be a solution
of , and define . If , while

and , then for every and
, with an exponentially increasing probability

(with respect to ), we have

(60)

provided that

(61)

Remark: Condition (61) puts a limit on the maximum of the
sparsity for which the above theorem is applicable. To see
this, let us fix the underdeterminedness factor .
Then, , and hence (61) and imply that

(62)

It is easy7 to see that for each , the function
is strictly increasing with respect to over

. Hence, if (62) holds for a , it holds also for
every . Therefore, (62) puts a limit on the maximum of
the sparsity for which (60) holds.
Moreover, if, as done in (59), we choose
, where , then (61) states that

(63)

Similarly, this equation puts a limit on the maximum of sparsity,
and since is increasing, for smaller
values of , this maximum on sparsity is more restricted.
By replacing the inequality in (63) with equality and solving

it with respect to , for each , we obtain the supremum of
for which Theorem 7 is applicable. Fig. 3 shows the plot of this
supremum versus for different values of . Note that the value

cannot be used, because it turns and hence the
right-hand side of (60) to infinity. It has been plotted, however,
because it indicates the supremum value of sparsity for which
one can choose a value for such that Theorem 7 is applicable.8

7This is because direct calculation shows that the derivative of
with respect to is equal to ,

which is strictly positive for and .

Fig. 3. The supremum of the values of sparsity versus
for which Theorem 7 holds.

It is seen that the range of sparsity for which we can use this
theorem is highly more restricted compared to the uniqueness
condition .

D. Proofs

We need first the following proposition that states proba-
bilistic upper bounds on quantities and .

Proposition 6: Let be an , random matrix
with i.i.d. and zero-mean Gaussian entries. Then, for each

and for all and , we
have

(64)

and hence

(65)

Remark: Any upper bound on can be used to replace

this term in (65). For example [48, Sec. IV-A]

(66)

where .
Proof of Proposition 6: There is no assumption in the

lemma about the variance of the entries of . However, since
multiplying each entry of by a constant does not change

and , it can be assumed, without loss of generality,
that this variance is equal to . Let now be a submatrix
of obtained by taking fixed columns of , and define

. Then, from Davidson and Szarek
inequalities, we have

(67)

(68)

8One may note some kind of tradeoff here. Smaller results in less deviation
of from , and hence a better upper bound in (60), but it decreases
the sparsity for which Theorem 7 is applicable.
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and hence

(69)

is the maximum of on all possible choices for

. Therefore, using the union bound

which completes the proof of (64). We have also (65), because
the events and are
identical (while ).

Proof of Theorem 6: From (23), if , then
. This is equivalent to say that if
, then . Therefore

(70)

By Lemma 4, and hence is
equivalent to . Therefore, from the
union bound

(71)

where in the last inequality, Lemma 4 has been used. Now, com-
bining (70), (71), and (65) proves the theorem.

Proof of Theorem 7: Let and
. Then, from (58),

we have

(72)

Hence, from (66)

(73)

When grows to infinity, the coefficient of in the exponent
converges to the constant , which is positive
by the assumption (61), and hence, is upper bounded by an
exponentially decreasing function.

VII. CONCLUSION

In this paper, we studied upper bounds for the estimation error
. We saw that such bounds can be constructed only

based on , and without knowing (the existence of a sparse
satisfying has been assumed). We have

also presented a tight upper bound for this error. Besides being
tight, this bound does not impose any assumption on the nor-
malization of the atoms of the dictionary, which enabled us to
study random dictionaries (which are used, e.g., in compressed
sensing).
As a result, our bounds guarantee that whenever is only ap-

proximately (not exactly) sparse, it would be not too far from ,
and the upper bound on their distance is determined by the prop-
erties of the dictionary . This upper bound decreases also
when is sparse with a better approximation. In this point of
view, our bounds can be seen as a generalization of the unique-
ness theorem to the case where is only approximately sparse.
Moreover, these bounds show that whenever grows, to
obtain a predetermined warranty on the maximum of
is needed to be sparse with a better approximation. This can
be seen as an explanation to the fact that the estimation quality
of sparse recovery algorithms degrades whenever grows.
We also studied the noisy case, and we saw that constructing

a general upper bound for this case is not easy. Hence, we did
not study random dictionaries for this noisy case, which can be
a subject for future investigations.

APPENDIX

A. Proof of Lemma 2

We will need the following lemma.

Lemma 5: Let be an matrix, , with unit -norm
columns. Then, .

Proof: The singular values of are the square root of
eigenvalues of . Moreover, since the columns of
have unit Euclidean norms, the main diagonal elements of

are all equal to . Therefore, , where
denotes the eigenvalues of . On the other hand, the rank

of is at most , and hence there are at most nonzero ’s.
Therefore

which completes the proof.

Proof of Lemma 2: From the definition (18), for
has only one column and hence using Lemma 3.
Moreover, is an matrix. We write

which holds by Lemma 5, because .
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B. Proof of Lemma 4

To prove that is strictly increasing with respect to ,
we state the following lemma, in which, we first define a func-
tion , such that ’s are scaled samples of
this function [more precisely ] for ap-
propriate values of the parameters of the function. Then, we
show that is itself strictly increasing, and hence so are its
samples.

Lemma 6: Let be real numbers with
. Then, function , defined below, is strictly increasing on
the interval

(74)

Before going to the proof, note that
for , and .

Proof of Lemma 6: We have to prove that is
increasing on , and hence we have to prove that

. By defining

, we have , and hence
. Consequently, we have to prove
. Direct calculations show that

is equal to

and hence is equivalent to

(75)

To prove (75), we multiply both sides by
and write it as

(76)

Note that from , we have

(77)

and hence, to prove (76), it is sufficient to prove that

(78)

which by multiplying both sides by is equivalent
to

(79)

Fig. 4. A typical graph of defined in (74) and the values defined
in (56). Note: in the figure stands for .

Doing some algebraic manipulations, the left-hand side of the
above inequality is equal to

(80)

and hence (79) holds because the first three terms of the above
expression are nonnegative (note that may be equal to zero),
and the last term is positive from and (because

).

Proof of Lemma 4: Note that for
, and , where is as

defined in (74). Now, since ,
the conditions of Lemma 6 are satisfied, and hence that lemma
ensures that is strictly increasing.
To prove , we note that it is equivalent to

which holds because and .

Fig. 4 shows a typical graph of and (denoted by
in the figure).
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